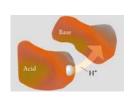


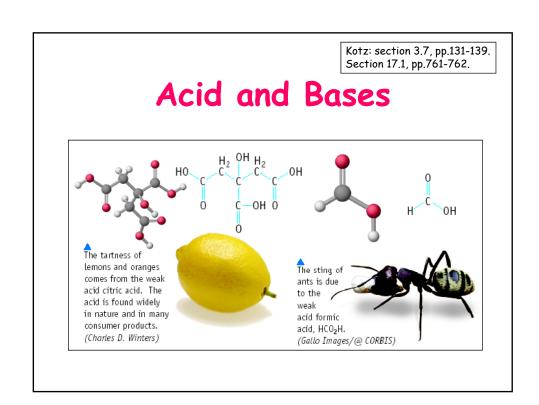
JF Chemistry 1101 2010 Introduction to Physical Chemistry: Acid Base and Solution Equilibria.

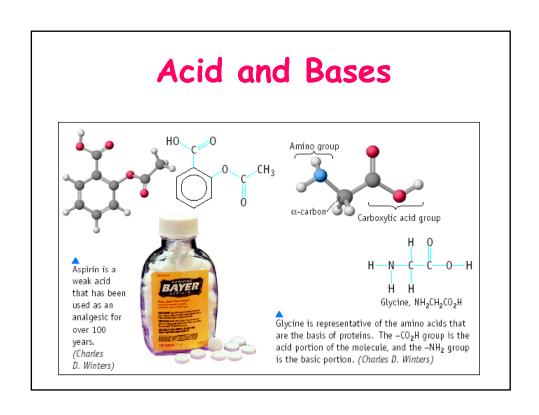


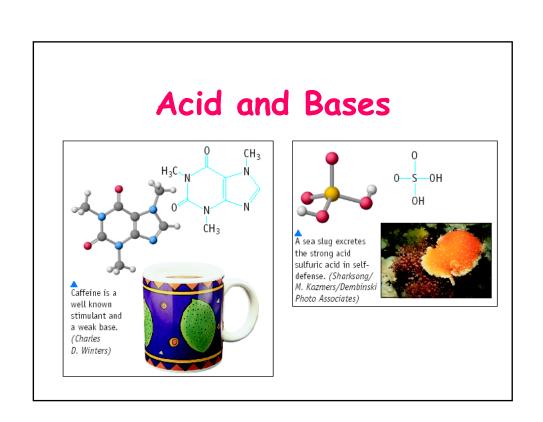
Dr Mike Lyons School of Chemistry melyons@tcd.ie

Required Reading Material.

- · Silberberg, Chemistry, 4th edition.
 - Chapter 18.
 - · Acid/base equilibria. pp.766-813.
 - Chapter 19.
 - Ionic equilibria in aqueous systems. pp.814-862.
- · Kotz, Treichel and Weaver, 7th edition.
 - Chapter 17 (Chemistry of Acids and Bases) & Chapter 18 (Principles of reactivity: other aspects of ionic equilibria), pp.760-859.
- Chemistry³, Burrows et al.
 - Chapter 6, Acids & bases, pp.263-299.

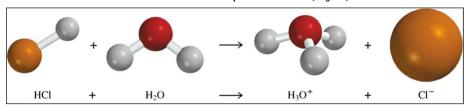

COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH TRINITY COLLEGE DUBLIN


Review : Kotz Chapter 3 for simple acid/base definitions.

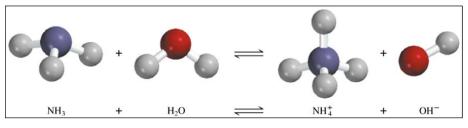

Lecture 13.

Acid/base chemistry: Simple ideas: Arrhenius, Bronsted-Lowry, Lewis.

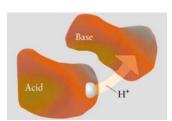
Arrhenius (or Classical) Acid-Base Definition


- An acid is a neutral substance that contains hydrogen and dissociates or ionizes in water to yield hydrated protons or hydronium ions H₃O⁺.
- A base is a neutral substance that contains the hydroxyl group and dissociates in water to yield hydrated hydroxide ions OH
- Neutralization is the reaction of an H $^+$ (H $_3$ O $^+$) ion from the acid and the OH $^-$ ion from the base to form water, H $_2$ O.
- These definitions although correct are limited in that they are not very general and do not
- Give a comprehensive idea of what acidity and basicity entails.

 $HCl \rightarrow H^{+}(aq) + Cl^{-}(aq)$ $NaOH \rightarrow Na^{+}(aq) + OH^{-}(aq)$

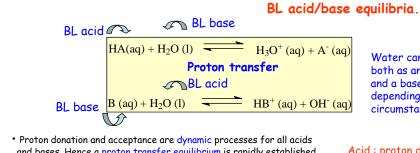

 $HCl + NaOH \rightarrow NaCl + H_2O$

Arrhenius acid is a substance that produces $H^+(H_3O^+)$ in water.



Arrhenius base is a substance that produces OH- in water.

Acids and bases: Bronsted/Lowry definition.


- Bronsted/Lowry Acid (HA):
 - An acid is a species which donates a proton
- Bronsted/Lowry Base (B):
 - A base is a species which accepts a proton.
- These definitions are quite general and refer to the reaction between an acid and a base.
- An acid must contain H in its formula; HNO₃ and H₂PO₄- are two examples, all Arrhenius acids are Brønsted-Lowry acids.
- A base must contain a lone pair of electrons to bind the H⁺ ion; a few examples are NH₃, CO₃²-, F⁻, as well as OH⁻. Brønsted-Lowry bases are not Arrhenius bases, but all Arrhenius bases contain the Brønsted-Lowry base OH-.

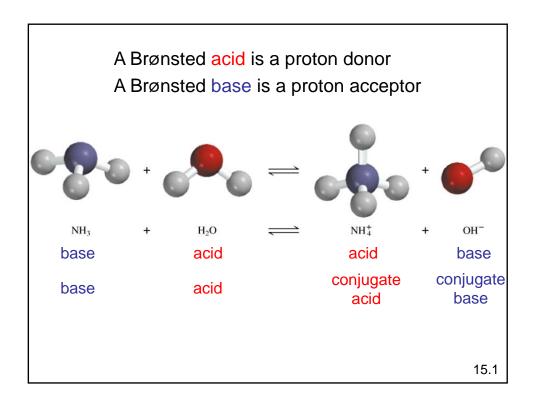
• In the Brønsted-Lowry perspective: one species donates a proton and another species accepts it: an acidbase reaction is a proton transfer process.

Chemistry³ section 6.1. pp.264-267.

Kotz 7th ed. Section 17.1. pp.761-765

- and bases. Hence a proton transfer equilibrium is rapidly established
- The equilibrium reaction is described in terms of conjugate acid/base pairs.
- · The conjugate base (CB) of a BL acid is the base which forms when the acid has donated a proton.
- · The conjugate acid (CA) of a BL base is the acid which forms when the base has accepted a proton.
- · A conjugate acid has one more proton than the base has, and a conjugate base one less proton than the acid has.
- · If the acid of a conjugate acid/base pair is strong (good tendency to donate a proton) then the conjugate base will be weak (small tendency to accept a proton) and vice versa.

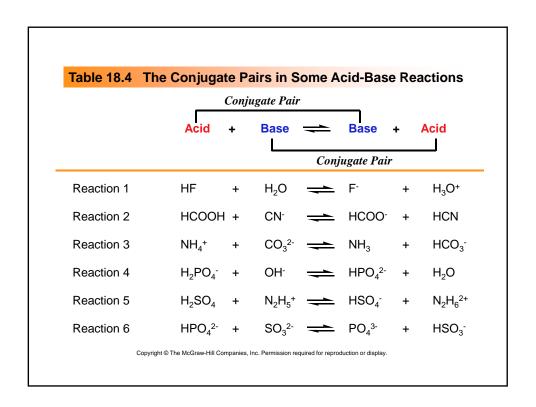
Acid: proton donor Base: proton acceptor


Water can function

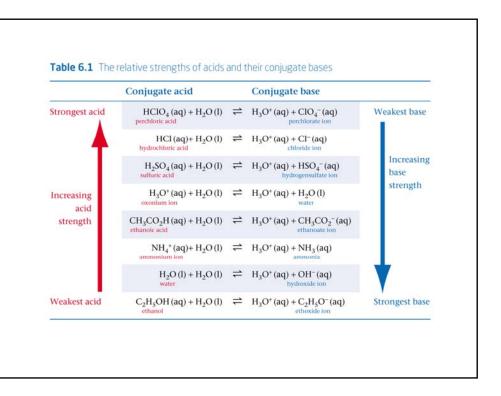
both as an acid and a base

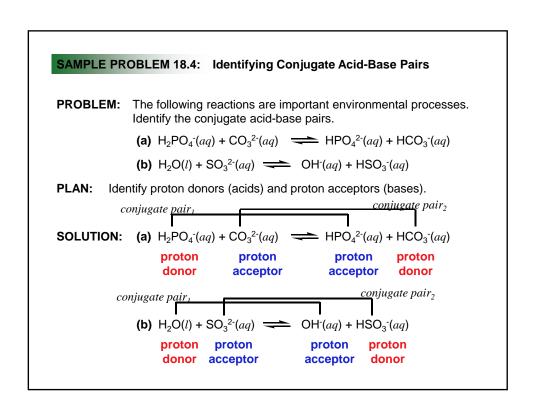
depending on the

circumstances.


Brønsted-Lowry Acid-Base Definition

An acid is a proton donor, any species which donates a H⁺.


A base is a proton acceptor, any species which accepts a H+.


An acid-base reaction can now be viewed from the standpoint of the reactants AND the products.

An acid reactant will produce a base product and the two will constitute an acid-base conjugate pair.

Acid	Conjugate Base	
HCIO ₄ (perchloric acid) HI (hydroiodic acid) HCI (hydrochloric acid) HCI (hydrochloric acid) HNO ₃ (nitric acid) HNO ₄ (hydronium ion) HF (hydrofluoric acid) HNO ₂ (nitrous acid) HNO ₂ (nitrous acid) HCOOH (formic acid) HCOOH (formic acid) HCOOH (hydrocyanic acid) HCN (hydrocyanic acid) HCN (hydrocyanic acid) H ₂ O (water) NH ₃ (ammonia)	CONJUGATE BASE CIO ₄ (perchlorate ion) I ⁻ (iodide ion) Br ⁻ (bromide ion) Cl ⁻ (chloride ion) HSO ₄ (hydrogen sulfate ion) NO ₃ (nitrate ion) H ₂ O (water) SO ₄ (sulfate ion) F ⁻ (fluoride ion) NO ₂ (nitrite ion) HCOO ⁻ (formate ion) CH ₃ COO ⁻ (acetate ion) NH ₃ (ammonia) CN ⁻ (cyanide ion) OH ⁻ (hydroxide ion)	Base strength increases

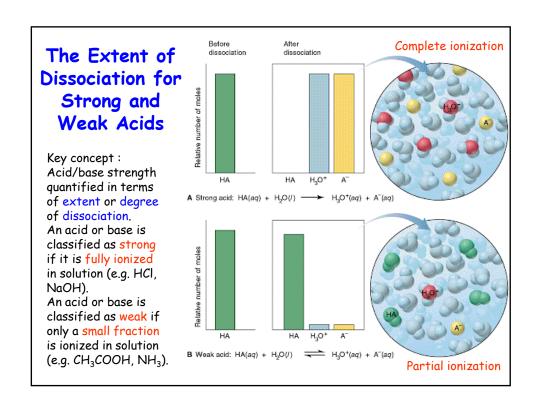
Strong and weak acids.

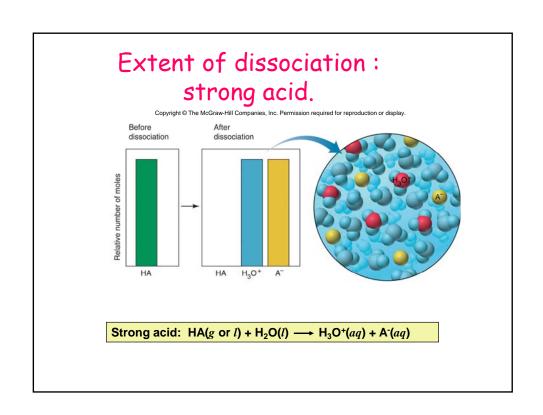
Strong acids dissociate completely into ions in water:

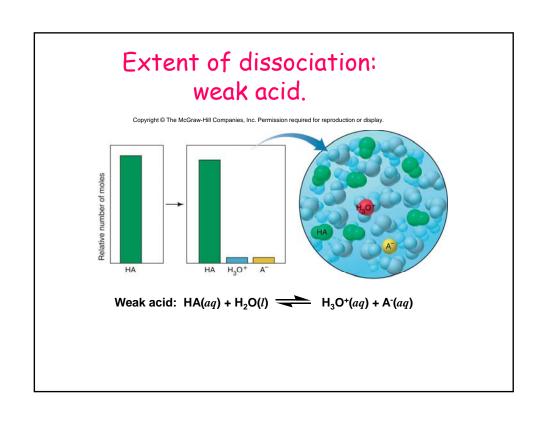
$$HA_{(q \text{ or } I)} + H_2O_{(I)} \longrightarrow H_3O^+_{(aq)} + A^-_{(aq)}$$

In a dilute solution of a strong acid, almost no HA molecules exist: $[H_3O^+] = [HA]_{init}$ or $[HA]_{eq} = 0$

$$Q_c = \frac{[H_3O^+][A^-]}{[HA][H_2O]} \text{ at equilibrium, } Q_c = K_c \gg 1$$


Nitric acid is an example: $HNO_{3(1)} + H_2O_{(1)} \Longrightarrow H_3O^*_{(aq)} + NO_{3(qq)}$


Weak acids dissociate very slightly into ions in water:


$$HA_{(aq)} + H_2O_{(aq)} \longrightarrow H_3O^+_{(aq)} + A^-_{(aq)}$$

In a dilute solution of a weak acid, the great majority of HA molecules are undissociated: $[H_3O^+] \ll [HA]_{init}$ or $[HA]_{eq} = [HA]_{init}$

$$Q_c = \frac{[H_3O^+][A^-]}{[HA][H_2O]}$$
 at equilibrium, $Q_c = K_c \ll 1$

Reactivity of strong and weak acids.

1M HCl(aq)

1M CH3COOH(aq)

Classifying the Relative Strengths of Acids.

Strong acids.

There are two types of strong acids:

- ·The hydrohalic acids HCl, HBr, and HI
- •Oxoacids in which the number of O atoms exceeds the number of ionizable H atoms by two or more, such as HNO_3 , H_2SO_4 , $HCIO_4$

Weak acids.

There are many more weak acids than strong ones. Four types, with examples, are:

- The hydrohalic acid HF
- Those acids in which H is bounded to O or to halogen, such as HCN and $\rm H_2S$
- Oxoacids in which the number of O atoms equals or exceeds by one the number of ionizable H atoms, such as HCIO, HNO_2 , and H_3PO_4
- Organic acids (general formula RCOOH), such as CH_3COOH and C_6H_5COOH .

Classifying the Relative Strengths of Bases.

Strong bases.

- Soluble compounds containing O²⁻ or OH⁻ ions are strong bases. The cations are usually those of the most active metals: M₂O or MOH, where M= Group 1A(1) metals (Li, Na, K, Rb, Cs).
- MO or M(OH)₂, where M = Group 2A(2) metals (Ca, Sr, Ba) [MgO and Mg(OH)₂ are only slightly soluble, but the soluble portion dissociates completely.]

Weak bases.

- Many compounds with an electron-rich nitrogen are weak bases (none are Arrhenius bases). The common structural feature is an N atom that has a lone electron pair in its Lewis structure.
 - Ammonia (NH₃)
 - Amines (general formula RNH₂, R₂NH, R₃N), such as $CH_3CH_2NH_2$, $(CH_3)_2NH$, $(C_3H_7)_3N$, and C_5H_5N

Strong Electrolyte - 100% dissociation

NaCl (s)
$$\xrightarrow{H_2O}$$
 Na⁺ (aq) + Cl⁻ (aq)

Weak Electrolyte - not completely dissociated

$$CH_3COOH \longrightarrow CH_3COO^-(aq) + H^+(aq)$$

Strong Acids are strong electrolytes

$$HCI(aq) + H_2O(h) \longrightarrow H_3O^+(aq) + CI^-(aq)$$

$$\mathsf{HNO_3} \; (\mathit{aq}) + \mathsf{H_2O} \; (\mathit{I}) \; \longrightarrow \; \mathsf{H_3O^+} \; (\mathit{aq}) + \mathsf{NO_3^-} \; (\mathit{aq})$$

$$\mathsf{HCIO_4}\left(aq\right) + \mathsf{H_2O}\left(h\right) \longrightarrow \mathsf{H_3O^+}\left(aq\right) + \mathsf{CIO_4}^-\left(aq\right)$$

$$\mathsf{H}_2\mathsf{SO4}\;(aq) + \mathsf{H}_2\mathsf{O}\;(h) \longrightarrow \mathsf{H}_3\mathsf{O}^+\;(aq) + \mathsf{HSO}_4^{-}\;(aq)$$

15.4

Weak Acids are weak electrolytes

HF
$$(aq) + H_2O (h) \longrightarrow H_3O^+ (aq) + F^- (aq)$$

HNO₂ $(aq) + H_2O (h) \longrightarrow H_3O^+ (aq) + NO_2^- (aq)$
HSO₄⁻ $(aq) + H_2O (h) \longrightarrow H_3O^+ (aq) + SO_4^{2-} (aq)$
H₂O $(h) + H_2O (h) \longrightarrow H_3O^+ (aq) + OH^- (aq)$

Strong Bases are strong electrolytes

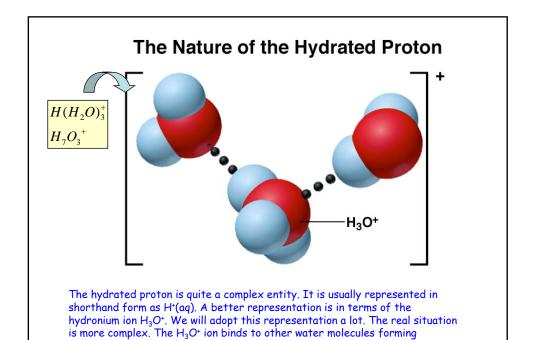
NaOH (s)
$$\stackrel{\text{H}_2\text{O}}{\longrightarrow}$$
 Na⁺ (aq) + OH⁻ (aq)
KOH (s) $\stackrel{\text{H}_2\text{O}}{\longrightarrow}$ K⁺ (aq) + OH⁻ (aq)
Ba(OH)₂ (s) $\stackrel{\text{H}_2\text{O}}{\longrightarrow}$ Ba²⁺ (aq) + 2OH⁻ (aq)

15.4

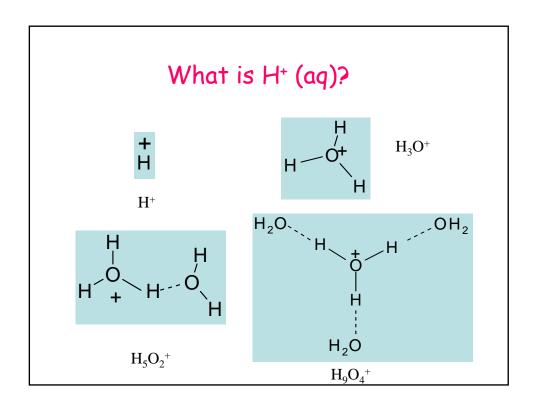
Weak Bases are weak electrolytes

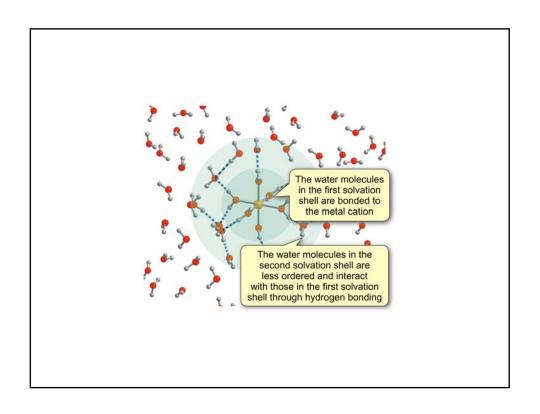
$$F^{-}(aq) + H_2O(h) \longrightarrow OH^{-}(aq) + HF(aq)$$

 $NO_2^{-}(aq) + H_2O(h) \longrightarrow OH^{-}(aq) + HNO_2(aq)$


Conjugate acid-base pairs:

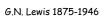
- The conjugate base of a strong acid has no measurable strength.
- H₃O⁺ is the strongest acid that can exist in aqueous solution.
- The OH- ion is the strongest base that can exist in ageous solution.


15.4

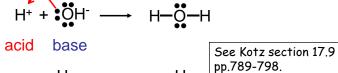

Representing Protons

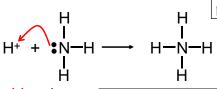
- Both representations of the proton are equivalent.
- $H_5O_2^+$ (aq), $H_7O_3^+$ (aq), $H_9O_4^+$ (aq) have been observed.
- · We will use H+(aq)!

a mixture of species with the general formula $H(H_2O)_n^{+}$. In fact the structural details of liquid water is still a hot item of research.


Yet more sophistication: Lewis acidity

An <u>Arrhenius acid</u> is defined as a substance that produces $H^+(H_3O^+)$ in water.


A Brønsted acid is defined as a proton donor


A <u>Lewis acid</u> is defined as a substance that can accept a pair of electrons.

A <u>Lewis base</u> is defined as a substance that can donate a pair of electrons

acid base

http://en.wikipedia.org/wiki/Gilbert_N._Lewis

Electron-Pair Donation and the Lewis Acid-Base Definition

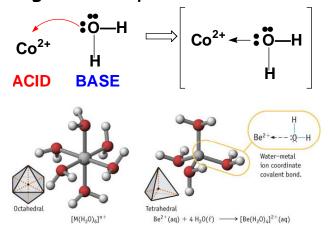
The Lewis acid-base definition:

- A base is any species that donates an electron pair.
- An acid is any species that accepts an electron pair.

Protons act as Lewis acids in that they accept an electron pair in all reactions:

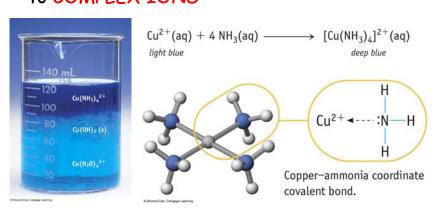
B:
$$+$$
 H^+ \longrightarrow $B-H^+$

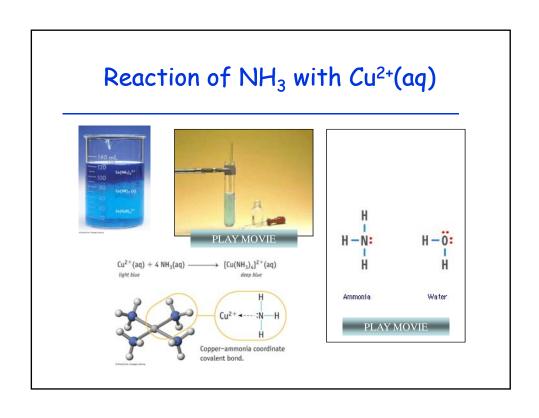
The product of any Lewis acid-base reaction is called an *adduct*, a single species that contains a new covalent bond.

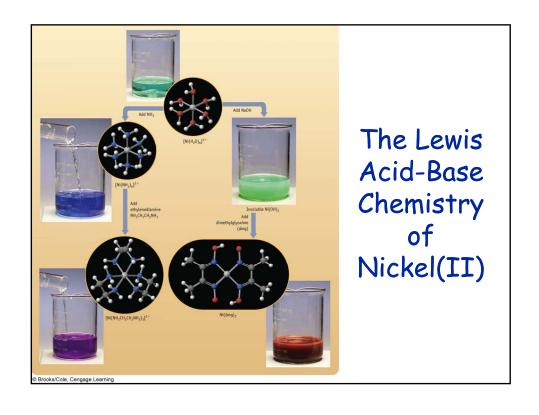

- A Lewis base has a lone pair of electrons to donate.
- A Lewis acid has a vacant orbital

Lewis Acids and Bases

No protons donated or accepted!

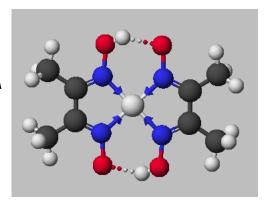

15.12


Other good examples involve metal ions.

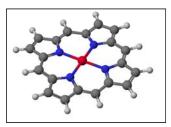


Lewis Acids & Bases

The combination of metal ions (Lewis acids) with Lewis bases such as H_2O and NH_3 leads to COMPLEX IONS

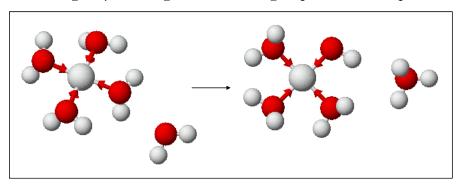


 $[Ni(H_2O)_6]^{2+} + 6 NH_3 \rightarrow [Ni(NH_3)_6]^{2+}$



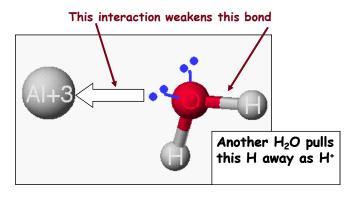
DMG = dimethylglyoxime, a standard reagent to detect nickel(II)

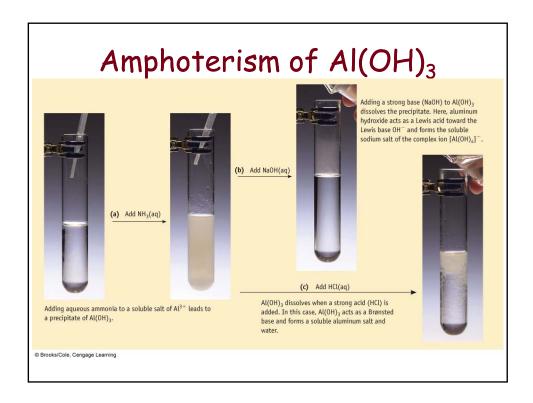
Lewis Acid-Base Interactions in Biology



Heme group

- The heme group in hemoglobin can interact with O₂ and CO.
- The Fe ion in hemoglobin is a Lewis acid
- O₂ and CO can act as Lewis bases


Many complex ions containing water undergo HYDROLYSIS to give acidic solutions.


$$[Cu(H_2O)_4]^{2+} + H_2O \rightarrow [Cu(H_2O)_3(OH)]^+ + H_3O^+$$

This explains why water solutions of Fe $^{3+}$, Al^{3+} , Cu^{2+} , Pb^{2+} , etc. are acidic.

This explains **AMPHOTERIC** nature of some metal hydroxides.

 $AI(OH)_3(s) + 3 H_3O^+ \rightarrow AI^{3+} + 6 H_2O$

Here $Al(OH)_3$ is a Brønsted base.

 $AI(OH)_3(s) + OH^- \rightarrow AI(OH)_4^-$

Here $Al(OH)_3$ is a Lewis acid.