Transition Metal Coordination Chemistry

Prof S.M.Draper

2.05 SNIAMS Building smdraper@tcd.ie

Recommended books

M.J. Winter, d-block Chemistry, Oxford Chemistry Primers, OUP, 2001 M.S. Silberberg, Chemistry, 3rd Ed, McGrawHill, 2003 (chapter 23)

C.E. Housecroft, A.G. Sharpe, Inorganic Chemistry, 1st Ed, PrenticeHall, 2001 J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, 4th Ed., HarperCollins, 1993

Colour of tra	nsition metal complexe	es	
	Ruby Corundum Al ₂ O ₃ with in	npurities	
2	Sapphire Corundum Al ₂ O ₃ with an	d impurities	octahedral metal centre coordination number 6
	Emerald Beryl AlSiO ₃ containing Be	e with impurities	

Alfred	I Werner - Nobel	I Prizewinner 1913
CoCl ₃ . 6NH ₃	yellow	xs Ag⁺ 3 moles AgCl
CoCl_3 . 5NH $_3$	purple	xs Ag ⁺ 2 moles AgCl
CoCl_3 . 4NH $_3$	green	xs Ag ⁺ 1 mole AgCl
CoCl_3 . 3NH $_3$		xs Ag+ 0 moles AgCl

The reaction continues					
$[Fe(OH_2)_4(CN)_2] + CN^- [Fe(OH_2)_3(CN)_3]^- + H_2O$	$\beta_3 = \frac{[\text{Fe}(\text{OH}_2)_3(\text{CN})_3]}{[\text{Fe}(\text{OH}_2)_6^{2*}] \ [\text{CN}^{-1}]^3}$				
$[Fe(OH_2)_3(CN)_3]^2$ + CN^2 $$ $[Fe(OH_2)_2(CN)_4]^{2^2}$ + H_2O	$\beta_4 = \frac{[Fe(OH_2)_2(CN)_4^{-2}]}{[Fe(OH_2)_6^{-2*}] \ [CN^{-1}]^4}$				
$[Fe(OH_2)_2(CN)_4]^{2^-}$ + $CN^- $ $$ $[Fe(OH_2)(CN)_5]^{3^-}$ + H_2O	$\beta_{5} = \frac{[Fe(OH_{2})(CN)_{5}^{3\cdot}]}{[Fe(OH_{2})_{6}^{2\star}] \ [CN^{\cdot}]^{5}}$				
$[Fe(OH_2)(CN)_5] + CN^- $ $(Fe(CN)_6]^{4-} + H_2O$	$\beta_{6} = \frac{[\text{Fe}(\text{CN})_{6}^{4}]}{[\text{Fe}(\text{OH}_{2})_{6}^{2*}] \ [\text{CN}^{-}]^{6}}$				
Overall Stability Constant $\beta_n = \frac{[ML_n]}{[M] [L]^n}$					
Stability constants are often expressed in log form $ie \log \beta_n$					

Entropy of chelate formation	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$				
$\Delta G^{o} = -RT \ln K$ $\Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$ Enthalphy changes similar Entropy changes differ	$[Cu(OH_2)_6]^{2+} + 2 NH_3 \qquad \qquad [Cu(OH_2)_4(NH_3)_2]^{2+} + 2 H_2O$ $\beta_2 10^{7.7} \log \beta_2 = 7.7$ $\Delta H^o = -46 \text{ kJ mol}^{-1} \qquad \Delta S^o = -8.4 \text{ J K}^{-1} \text{mol}^{-1}$				
$[M(OH_2)_6]^{n+} + 6 NH_3 \iff [M(NH_3)_6]^{n+} + 6 H_2O$ $[M(OH_2)_6]^{n+} + 3 en \iff [M(en)_3]^{n+} + 6 H_2O$	$[Cu(OH_2)_6]^{2+} + en \qquad \longrightarrow \qquad [Cu(OH_2)_4(en)]^{2+} + 2 H_2O$ $\beta_2 10^{10.6} \log \beta_1 = 10.6$ $\Delta H^o = -54 \text{ kJ mol}^{-1} \qquad \Delta S^o = +23 \text{ J K}^{-1} \text{mol}^{-1}$				
ΔS° is large and positive \square - T ΔS° is large and negative \square					

Tour of Coordination Numbers and their Geometries
The Kepert Model
The shape of a complex is usually dictated by the number of coordinated atoms.
The coordinated atoms are as far away from each other as possible. Non-
bonding electrons are ignored.
Note:
regular geometries are often distorted
structural features of multinuclear complexes are described in terms used
for individual metal centres
• when energy differences between different structures are small, fluxional
behaviour may be observed

Most Common Geometries of Transition Metal Complexes					
Tetrahedral	109º 28'	C.N. 4			
Square Planar	90°	C.N. 4	\succ		
Trigonal bipyramidal	120º + 90º	C.N. 5			
Square based pyramidal	90°	C.N. 5			
Octahedral	90°	C.N. 6			

cis/trans

mer/fac

 Δ and Λ

High and Low s	pin Complexes			Factors affecting	g the magnitude of $\Delta_{\rm oc}$	zt
High spin complex	Low spin complex	e.g.	[Fe(OH ₂) ₆] ²⁺ [Co(OH ₂) ₆] ²⁺	$\Delta_{oct} = 10\ 000\ cm^{-1}$ $\Delta_{oct} = 9\ 700\ cm^{-1}$	[Fe(OH ₂) ₆] ³⁺ [Co(OH ₂) ₆] ³⁺	Δ_{oct} = 14 000 cm ⁻¹ Δ_{oct} = 18 000 cm ⁻¹
Δ is small electrons occupy ${\rm e_g}$ and ${\rm t_{2g}}$ orbitals singly before pairing	Δ is large electrons pair in ${\rm t_{2g}}$ oribtals before occupying ${\rm e_g}$ orbitals		e.g.	[Co(NH ₃) ₆] ³⁺ [Rh(NH ₃) ₆] ³⁺ [Ir(NH ₃) ₆] ³⁺	$\Delta_{oct} = 22\ 900\ cm^{-1}$ $\Delta_{oct} = 34\ 100\ cm^{-1}$ $\Delta_{oct} = 41\ 000\ cm^{-1}$	

Spin orbit coupling is particularly significant for metals lower in the periodic table but for 1st row transition metal complexes the formula can be used in a simplified form because: "The spin contribution outweighs the orbital angular momentum contribution to μ_{eff} " Spin only magnetic moment, μ_{SO} $\mu_{SO} = \sqrt{n (n + 2)}$ where n = number of unpaired electrons $\mu_{SO} = 2\sqrt{S (S + 1)}$ where S = total spin quantum number = n / 2

Intensity of colour depends on

1. Laporte Selection Rule

2. Spin Selection Rule

The Intensity of the colour depends on Selection Rules and is measured by the absorbance

Absorbance is defined by the Beer-Lambert equation: $A = log_{10}(I_0/I) = \epsilon.c.I$

where A = absorbance

- I_0 = intensity of incident light; I = intensity of light after passing through the cell;
- ε = molar absorption coefficient; c = concentration; I = cell pathlength.

Typical Spectrum: Octahedral Cr(III) complex

ε = 69 M⁻¹ cm⁻¹

[Cr] = 0.002M Calculation of E: A = εcl

9 At 590 nm, A = 0.138 0.15 0.1 $0.138 = \varepsilon \times 0.002M \times 1$ cm ε = 0.138/ 0.002 x 1 0.0

Wavelength (nm)

Transitions allowed by the selection rules (high ε values > 1000 M⁻¹cm⁻¹).

Valance Bond Theory

Ligand = Lewis base

Metal = Lewis acid

s, p and d orbitals give

with specific geometries

Number and type of M-L hybrid orbitals determines geometry of the complex

Octahedral Complex

e.g. [Cr(NH₃)₆]³⁺

