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Objectives of the course

Wave mechanics / Atomic orbitals (AOs)

The basis for rejecting classical mechanics (the Bohr Model) in treating
electrons

Wave mechanics and the Schrodinger equation

Representation of atomic orbitals as wave functions

Electron densities and radial distribution functions

Understanding the effects of shielding and penetration on AO energies

Bonding

Review VSEPR and Hybridisation

Linear combination of molecular orbitals (LCAO), bonding / antibonding
Labelling of molecular orbitals (MOs) (o, ® and g, u)

Homonuclear diatomic MO diagrams — mixing of different AO’s

More complex molecules (CO, H,O ....)

MO diagrams for Inorganic complexes

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture schedule

Revision of Bohr model of atoms

Schrodinger equation, atomic wavefunctions and radial
distribution functions of s orbitals

More complex wavefunctions and radial distribution
functions and electron shielding

Lewis bonding, Hybridisation, and molecular orbitals
Labelling MO’s. 15t row homonuclear diatomics

MO approach to more complex molecules and CO bonding
in transition metals complexes

Literature

Book Sources: all titles listed here are available in the Hamilton Library

1. Chemical Bonding, M. J. Winter (Oxford Chemistry primer 15)
Oxford Science Publications ISBN 0 198556942 — condensed text,
excellent diagrams

— 2. Basic Inorganic Chemistry (Wiley) F.A.Cotton, G. Wilkinson, P. L.
Gaus — comprehensive text, very detailed on aufbau principle

— 3. Inorganic Chemistry (Prentice Hall) C. Housecroft, A. G. Sharpe —
comprehensive text with very accessible language. CD contains
interactive energy diagrams

— Additional sources:
http://winter.group.shef.ac.uk/orbitron/ - gallery of AOs and MOs




Tutorials

» Expectation

— Tutorials are to go through problems that students are having with the
course

— Tutorials are NOT for the lecturer to give you the answers to the
questions — or to give you another lecture.

— All student must BEFORE the tutorial
* Look at the notes for the course and try to understand them
» Attempt the questions set — and hence find out what you can not do!

* Bring a list of questions relating to aspects of the course which you could
not understand (either from looking at the notes or attempting the
questions)

» It is a waste of both the lecturers and students time if the tutorial to ends up
being a lecture covering questions.

An introduction to

Molecular Orbital Theory

Lecture 1 The Bohr Model

Prof G. W. Watson
Lloyd Institute 2.05
watsong@tcd.ie

Adsorption / Emission spectra for Hydrogen

Johann Balmer (1885) measured line spectra for hydrogen
364.6 nm (uv), 410.2 nm (uv), 434.1 nm (violet), 486.1 nm (blue), and
656.3 nm (red).

H38 HY Hp Ho

410nm 434 nm 486 nm 656 nm

Balmer discovered these lines occur in a series - both absorption and emission -
where R is the Rydberg constant (3.29 x10'> Hz)

2]
moon

Balmer series n,=2 and n,=n,+1, n,+2, n,;+3 .....
Other series for n;=1 (Lyman — UV), n,=3 (Paschen — IR) etc.

Electrons must have specific energies — no model of the atom could explain this

Assumptions

Bohr model of the atom (1913)

http://www.youtube.com/watch?v=R70KPaKr5QM

1)  Rutherford (1912) model of the atom (Planetary model with central
nucleus + electrons in orbit)

2)  Planck (1901), Einstein (1905) — the energy electromagnetic waves is
quantised into packets called photons (particle like property).

Fluctuating electric

/magnetic field

E=hv

Velocity, ¢ Wavelength, A

ANAAN

An stationary observer counts
v waves passing per second

VY,

} i.e. frequency = v Hz , cycles/sec,
sec!




Bohr model of the atom

Speed of electromagnetic waves (c) is constant (v and A vary)
c=vA v=c/A E=hv, E=hc/A

As frequency increases, wavelength decreases. Given L 2> v

e.g. radiowaves: A=0.1m X-rays: A=1x10"2m
v=3x10°Hz v=3x 10" Hz
E=2x10%] E=2x101]J

E — energy (J), & — Plancks constant (J s), v — frequency (Hz),
¢ — speed of light (m™!), A — wavelength (m)

Bohr model of the atom

3)  Electron assumed to travel in circular orbits.

4)  Apply quantisation to orbits - only orbits allowed have quantised
angular momentum (comes from observation of spectra)

5:)
mvr =n| —
2z

5)  Classical electrodynamical theory rejected (charged particles
undergoing acceleration must emit radiation)

6) Radiation adsorbed or emitted only when electrons jump from one
orbit to another

AE=E,—E,

where a and b represent the energy of the start and finish orbits
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Bohr model

Electron travelling around nucleus in circular c=

orbits — must be a balance between attraction
to nucleus and flying off (like a planets orbit)

Electron feels two forces — must be balanced

2 2
1) Centrapedal (electrostatic) F= ~Ze PE —Ze

- drgr - dmeyr
2) Centrafugal 2
) 8 F="" KE:%mvz
r

Equalize magnitude of forces Resulting energy

my Ze* 2 Ze* 1 , - Zet —Ze? 1
5 E=—mv"+ = =——my
r o 4nsyr 4re,r 2 dreyr  8meyr 2

-Ze — nuclear charge, e — electron charge, g,- permittivity of free space,
7 - radius of the orbit, m — mass of electron, v — velocity of the electron

2

1

Bohr model — calculating the energy and radius

NOT EXAMANABLE
Energy 8_7ngei = —%mvz
0

(z:)
mvr =n| —
2r

Quantised angular momentum

— Zé? 1 5 —(mvr)2 —n*h?
L. =——myv = =
Combining the two 8regr 2 2mr® 8xtmr?
R o 1o o 2 —nth? &g, p nzhzgo
earranging to give r —= =
gmgto g r 87%m (- ze? mZe?

. . . -7* —mz%e*
Substitute r into energy gives -

&reyr 8n2hzg§

Energy is dependent on n? and Z? (2s and 2p the same — only true for 1
electron systems
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Energy levels of Hydrogen

Substitute quantised momentum into energy expression and rearrange
in terms of r (radius) (see previous slide)
e n2h280 B n2a0
xmZe* Z

a, (Bohr) radius of the 1s electron on Hydrogen 52.9 pm (n =1, Z=1)

Radius (r) depends on n? and ba

Substitute r back into energy expression gives

2.4
_—-mZl’e

_ _ 13.6056x 2*
8n’h’ey 2

(ineV)

n

Energy of 1s electron in H is 13.6056 eV = 0.5 Hartree (1eV = 1.602 x 101 J)

Energy (E) depends on iz and Z2
n
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Energy levels of Hydrogen

For hydrogen (Z=1)

renla,  E - ~13:6056

n= 2
n

n energy (eV)
1 -13.6056
2 -3.4014
3 -1.5117
4 -0.8504
5 -0.3779

o0 0.0000

Note. The spacing reflects the energy
not the radius of the orbit.

Ionization energy = -13.6056 eV
14

lf’;or hydrogen (Z=1)

~13.6056

r= n2a0 E = n2
n energy (eV) r i(pm)
1 136056 529 L
. a0 o\
3 -1.5117 476
4\ -0.8504 g47, e
5 % -0.3779 1322 ™
© N\ 0.0000 0
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Emission spectra
(http://www.youtube.com/watch?v=5227fYVzefs)

Energy of emission is E; i - Eina™

AE =13.6056 ! @ _
n inital n. ﬁn al

Same form as fitted to emission specta

Balmer series (= ng,,~2)

n=3 2 n=2 2> A =656 nm
n=4 2 n=2 > L =486 nm
n=5->n=2 > A=434nm

Note. The spacing reflects the energy
not the radius of the orbit.

R = 13.6056eV/c = 3.29 x10"5 Hz
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Problems with the Bohr Model

Only works for 1 electron systems
— E.g. H, He', Li**

Can not explain splitting of lines in a magnetic field
— Modified Bohr-Sommerfield (elliptical orbits - not satisfactory)

Can not apply the model to interpret the emission spectra of complex atoms
Electrons were found to exhibit wave-like properties

— e.g. can be diffracted as they pass through a crystal (like x-rays)
— considered as classical particles in Bohr model
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Wave / particle duality

http://www.youtube.com/watch?v=IsA_oIXdF 8

de Broglie (1923)

By this time it was accepted that EM radiation can have wave and particle
properties (photons)

de Broglie proposed that particles could have wave properties (wave /
particle duality). Particles could have an associated wavelength (1)

No experimental at time.

1925 Davisson and Germer showed electrons could be diffracted according
to Braggs Law (used for X-ray diffraction)

Numerically confirm de Broglie’s equation
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Wave Mechanics

For waves: it is impossible to determine the position and momentum of the
electron simultaneously — Heisenberg ‘Uncertainty principle’

Use probability of finding an electron from y? (actually y*y — but functions
we will deal with are real)

Where v is is a wave function and a solution of the Schrodinger equation
(1927). The time-independent form of the Schrédinger equation for the
hydrogen atom is:

_ eZ , a 2 6 2 a 2
b Y ¥ = ¥ V= + +
drer ox’ oy oz
Kinetic Potential Total
energy energy energy
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Wave mechanics and atoms

What does this mean for atoms

Electrons in “orbits” must have an integer number of
wavelengths

E.g. n=4 and n=5 are allowed

— These create continuous or standing waves (like on a
guitar string)

E.g. n=4.33 is not allowed
— The wavefunction is not continuous

The wave nature of electrons brings in the quantized
nature of the orbital energies.




Atomic solutions of the Schrédinger equation for H

Schrodinger equation can be solved exactly for 1 electron systems
— Solved by trial and error manipulations for more electrons

3 quantum numbers describing a three dimensional space called an atomic
orbital: n, [, m (and spin quantum number describing the electron s)

n = principal quantum number, defines the orbital size with values 1 to o

/= azimuthal or angular momentum quantum number, defines shape.
For a given value of n, / has values 0 to (n-1).

m; = magnetic quantum number, defines the orbital orientation.
For a given value of /, m, has values from +/ through 0 to —/.

21

Solution of the Schrodinger equation for H

[ has values 0 to (n-1)

n 1 2 2 2
/ 0 0 1
m, 0 0 -1 0
Orbital Is 2s 2p 2p
n 3 3 3 3 3 3 3 3
/ 0 1 1 1 2 2 2 2
m, 0 -1 0 1 2 -1 0 1
Oribtal 3s 3p 3p 3p 3d 3d 3d 3d

m has values from +/ through 0 to —/

3d
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An introduction to
Molecular Orbital Theory

Lecture 2 — Representing atomic orbitals - The
Schrédinger equation and wavefunctions.

Prof G. W. Watson
Lloyd Institute 2.05
watsong@tcd.ie

Last Lecture

Recap of the Bohr model
— Electrons
— Assumptions
— Energies / emission spectra
— Radii

Problems with Bohr model
— Only works for 1 electron atoms
— Can not explain splitting by a magnetic field

Wave-particle duality

Wave mechanics
— Schrodinger

— Solutions give quantum number #, /, m; > atomic orbitals

24




Representations of Orbitals:

For an atomic system containing one electron (e.g. H, He* etc.)
The wavefunction, ¥, is a solution of the Schrodinger equation

It describes the behaviour of an electron in region of space called an atomic
orbital (¢ - phi)

Each orbital wavefunction (¢ ) is most easily described in two parts
radial term — which changes as a function of distance from the nucleus
angular terms — which changes as a function of angles

4 xyz: (pradial(r) @angular(q)ﬂe) = Rnl(r) Ylm((l)’e)

Orbitals have
» SIZE determined by R (1) - radial part

* SHAPE determined by Y, (¢,0) - angular part (spherical harmonics)
* ENERGY determined by the Schrodinger equation

Polar Coordinates

. To describe the wavefunction of atomic orbitals we must describe it in
three dimensional space

. For an atom it is more appropriate to use spherical polar coordinates:

A
Z-axi1s

S~

Tt--._ P Location of point P
Cartesian =X, y, z

2>1,6¢,0

X-axis

java applet on polar coordinates at http://qsad.bu.edu/applets/SPCExp/SPCExp.html
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Wavefunctions for the AO’s of H Radial Wavefunction
General hydrogen like orbitals * R(r) of the 1s orbital of H
it decays exponentially with r
R,(1) Y,.(0,0) R(r)= 9,(n it has a maximum atr =0
% % 27
Is 2 Z P/ (4) p= (J * R(r) has no physical meaning 4
ay T na,
 Probability depends on R(r)? s 1\ (1s)?
For hydrogen this simplifies as Z=1 and a =1 (in atomic units) and thus p = 2. 5
Hence — Misleading — does not take <
Normalisation into account the volume £ 5
R v 0 Constants are such that ;:5
(") in(¢6) — R(r)? increases toward r = 0
1 [p*0r =1 11 1
s 207 e °
N . . — Volume very small so
'Fhat is the.: probability of the electron probability of being at 0 ‘ ‘ ‘ ‘ ‘
Angular component is a constant in an orbital must be 1 when all Space small r is small 0 1 2 3 4 5
> Spherical is considered Radius (a.u)
28
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Radial distribution functions (RDF)

» Probability of an electron at a radius r (RDF) is given by probability of an
electron at a point which has radius r multiplied by the volume at a radius of r

» Consider a sphere — volume as we move at a small slice is 4nr? dr

Wave functions of 2s and 3s orbitals

2s(r)

3s(r)

3
General 1( z jé 2= pryePr

o)

1

943

%
(Z]  (6=6pr+(pr))e PP

)
(22
na,

— By differentiation, 8
4 3
the volume of a sphere = 5727” 6 1
N Is For H 2s > Z=1,n=2, p=1 3s > Z=1,n=3, p=2/3
oV 2 S4 4 2
S0 — 4 X 1 _ 2 (-r/3)
or g —(2-r)e P 6— 4r+( j e
' 3 227" 9I
. RDF(r) = 4mr? R(r)? 27 o . .
The form of the wave functions is the important ¢concept — not the precise equation
. . 0
*  Maximum for Is at a, (like Bohr!) 0 1 2 3 4 5 Note R(r) has functional form
Radius (a.u)
Normalisation constant * polynomial (increasing order with n) * exponential (-r/n)
29 30
Wave functions of Hydrogen 2s and 3s orbitals What does a negative sign mean
1 (=1/2) 2V 3 » The absolute sign of a wave function is not important.
ForH 25(n= - >(2-re™ ForH 3s(n= ¢ [ 6-4r +( 3 j ¢ — The wave function has NO PHYSICAL SIGNIFICANCE
— the electron density is related to the square of the wave function
exponential decreases more slowly than 1s, (=" /n) > more diffuse orbital ~ This is the same irrespective of the sign
*  Wavefunction signs matter when two orbitals interact with each other (see
later)
Wavefunctions changes sign * Some books have the 2s as opposite sign — you can see that the electron
05 density R(r)?is the same
R(r) =0 > RADIAL NODE 04| 2 0.8
. g: 03 - 06~ 04 -
2s at (2-r) =0 (i.e. =2 a.u.) - 04- 5
": 0.2 - ¢:U 0.2 - 2s <
) . . = e £ (2s)°
3s changes sign twice with two X o1- 3g £ 0- = 02-
nodes (r=1.9, 7.1 a.u.) o g 020 0 &
T T T T T 1 04 _
0o 2 8 10 12 14 16
—>Caused by the order of -0.1 Radius (a.u) -0.6 - 0~ ‘ ‘ ‘ ; ‘
o1 adlius (a.u 0.8 2 4 6 8 10
the polynomial ! Radius (a.u) Radius (a.u)
32
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Radial Nodes

RDF’s of ns orbitals

o Number of radial node = n—17—1 Is — 1 peak. Maximum at r = a; - Bohr Model > radius of a,
ls= 1-0—-1 = 0 2s — 2 peaks Maximum atr =5 a, - Bohr Model -> radius of 4 a,
3s — 3 peaks Maximum atr =~ 13 a0 - Bohr Model -> radius of 9 a,
2s= 2-0-1 =1 2p= 2-1-1 =0
33= 3-0-1 =2 3p= 3-1-1 =1 3d= 3-2-1 =0 Shape important for orbital energies
8
*  Why are there radial nodes ? 1s
— Pauli exclusion principle — no two electrons can have the same set of QN’s 6 -
— Actually — no two electron can overlap (i.e. occupy same space) & 25
* é"i 3s
— Overlap integral= [ 1 P07 =0 (analogous to normalisation) 2
AQ’s are said to be Orthogonal
0 T T T
. . . . . . 0 5 10 15 20
— Satisfied for AO’s with same / by having change(s) in the wave function sign Radius (a.u)
— Satisfied for AO’s with different / angular component ensures no overlap
33 34
Representing atomic orbitals Boundary surface
* Represent orbitals, so far radial and angular terms * Represent the wave function in 3D
— Draw a 3D contour at a given value of ¢
« In 2D we can use dot diagrams to look at the whole wave function — Alternatively can define contour such that in enclosed a space which the
bitals h 1 herical electron spends most of its time
— sor 1‘.ta s have no angular compor'lent f SP erica symme@ _ Shows the shape and size of the orbital
— Dot diagrams show electron density within a plane — no sign _ Can not see the inner structure of the wave function
— Can see where density goes to zero — nodes
— Can see how greater volume as r increases makes most probable 2
distance. 5 1s Boundary surface
Is 2s 3s 2 :
£ 1-
» 3
. 0
0 1 2 3 4 5
Radius (a.u)
35 36




p orbitals - wavefunctions

* There are three p orbitals for each value of n (p,, p,, p.)
— The radial function is the same for all np orbitals
— The angular terms are different = different shapes (orientations)

— Angular terms are the same for differentn = 2p,, 3p,, 4p,

*  Wave function for 2p and 3p orbitals p= (ﬂj
R(r) (0 9) "
WEA% Y(p.)= (3)% cos(0)
RQ2p) = (] pretP1?) P 4n
276\ a, JA

Y(p,)= (43”) * sin(0) cos(#)

(=pr/2) JA

(4-pr)pre Y(p,)= (3j ’ sin(@)sin(¢)
4

%
o2
0

p orbitals — radial functions

Radial wave function for hydrogen p orbitals (Z=1)
for2p n=2-> p=1 for3pn=3-> p=2/3

R(2p)= L 4- Zi’jb’e(zrm

20

2.6 3
Polynomial - nodes
— Equation for no. of radial nodes 0.2
- n—1-12>2p=0,3p=1 015 - 2p
— Ensures 2p and 3p orthogonal S
S 0.1-
All p orbitals are multiplied by r £
2> R(r)=0atr=0 F005-[ 3
Required to match the angular function 0 ‘ ‘ ‘
- angular node 0.05 0 5 15

Note the functional form of R(r) = Constant * polynomial * r * exponential Radius (a.u)
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p orbitals — angular functions boundary surfaces p orbitals — RDF’s
|
» All p orbitals have the same shape Y(p.)= ( 3 ) 2 cos(8) * Radial distribution function show probability at a given radius
= \drx
* Angular function give rise to direction v 3 P (0 » 2p function — no nodes, maximum at r = 4 a, (same as n=2 for Bohr model)
(py)= 4r sin(@)cos(¢) * 3p function — two peaks, maximum at r = 12 a,, (not the same as Bohr)
» Can represent p orbital as dot diagrams or 3 A
boundary surfaces Y(pe)= (47[) sin(0)sin(¢) 25
2 2p
¢ 1 angular nodal plane p, (yz plane), p, (xz plane) p, (xy plane)
— Ensures that p orbitals are orthogonal to s orbitals = ol
! 3p
2p 3p z | ¥
i : i - ’.’_‘,.r" 0.5 -
%‘ - » : 0 ‘ ; ‘
% - e y B // 0 5 10 15 20
X - Radius (a.u)
B P
40
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An introduction to
Molecular Orbital Theory

Lecture 3 — More complex wave functions, radial distribution
functions and electron shielding

Revision of Lewis bonding and hybridization
Prof G. W. Watson

Lloyd Institute 2.05
watsong@tcd.ie

Last week

* Solutions of the Schrodinger equation for atoms
— Atomic orbitals ()
— Defined three quantum number (n, /, m))

* Defined polar coordinates - radial and angular terms

» Examined wavefuntions of the s orbitals
— Angular term constant for s orbitals
— Wavefunction as  constant * polynomial * exponential
Decays as  ,(-r/n) -> the larger n the more diffuse the orbital
— Defined radial nodes and examined there number (polynomial >n —/-1)
Discussed the requirement for radial nodes = Pauli exclusion principle

* p orbitals
— Radial functions similar to s orbital (except additional r) = R(0) =0
— Angular terms define shapes p,, p, and p, — same for different n
— Radial distribution function for p orbitals

42

d orbitals — wave functions
* Five d orbitals for each value of n (n>3) > /=2 ,m,;=-2,-1,0, 1,2

¢ Wave functions slightly more complicated (constant * polynomial * r? * exp)
— Radial wave functions same for all 34 orbital

3
1 (ZJ/(,D’”)z (=pr/2)

R@3d) =
(3d) = 930
N 0.1
* Max probability atr=9 a,
0.08 -
' : 3d - R(r)
¢ AOQO’s with 0 nodes have @o.oe 1
max probability at same £,
radius as Bohr model E{
0.02 -
* 4d orbital has 1 node 0 0 5 16 1;; 20
Radius (a.u)

Note the functional form of R(r) > Constant * polynomial * r? * exponential ,;

d orbitals — angular functions

d,.d,.d,d.d.

* Angular functions same for o s dyy,s
-> same shape for 3d, 4d, 5d orbitals using boundary surfaces

,eirrespective of n

Five different angular function e.g.

15 Pe!
Yd,,)= ( 67r) sin(d) cos(8) cos(¢)

Two angular nodes planes >
orthogonal to s (0) and p (1)

e.g. d,,Nodal planes in
Xy and XZ .
d (yz) d.

xy

(x2)

?)

X

I /‘ [
o o N ‘ T o g i B
z ! Az . / o
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forbitals

Almost no covalent bonding - shape not really important
» [=3 - Seven different angular function for each n (n > 4)
— fblock is 14 element wide, same shape for 4f, 5f etc
— Radial functions same for all nf orbitals

— Three angular nodes (nodal planes) > orthogonal to s, p and d orbitals

Penetration

The RDF’s of AO’s within a given principle QN () have different shapes

Number of nodes n—1/7-1

- n=3 3s = 2 nodes

* electrons repel each other and shield the nucleus from other electrons

« Effective nuclear charge Z.;=7Z-S

S =a screening or shielding constant

E.g. Li atom — why is the electronic configuration /s°2s’ and not 1s? 2p’ ?

3p > 1 node 3d > 0 nodes
— 3s has a peak very close to the nucleus
TR Asy72 32 — 3p has a peak close to the nucleus — ;¢
4fy3—3yx2 Syz=yr | ' ' 3p
o
n /\s, ‘ » These close peaks have a very strong 1] e 3s
—
\ | 402 interaction with the nucleus S
i
| o : F051
5 % - u * 3sis said to be the most penetrating
) 0 ; ; ;
' * Penetration 3s > 3p > 3d 0 5 10 15 20
4fx3—3xv2 | 4fey g0 4’5@2 Radius (a.u)
Note the functional form of R(r) > Constant * polynomial * r 3* exponential ,5 26
Multi electron atoms Periodic table
* Can not analytically solve the Schrodinger equation for multi-electron atoms
— We assume hydrogen like wave functions for multi-electron atoms
» Nuclear charge increases with atomic No.

Shielding and penetration >

E(ns) < E(np) < E(nd) < E(nf)

This gives rise to electronic configuration of atoms and the order of elements
in the periodic table

» Electrons are filled in increasing energy (Aufbau principle) and electrons fill
degenerate (same energy) levels singularly first to give maximum spin
8 (Hund’s rule)
1s electrons shields the valence Main elements (s, p) \12'
electrons from the nuclear charge IV VI
2s penetrates more effectively ¢ &1 e * E(4s) <E(3d) o H. N 13141516 171§} 1
- feels a greater nuclear charge o K, Ca g’_ é 2
2p penetrates less effectively z 4 2p =3 3 4.5 6 7 8 9101112 .
— 2s s filled first & 2s ‘5‘ 3
21 . E(6s) < E(5d) = E(4f) 6a
E(1s) <E(2s) <E(2p) —
o | La [Xe] 6s? 5d! —
E(ns) < E(np) < E(nd) 0 5 10 Ce [Xe] 6s2 412 s block Lanthanides
Radius (a.u) Actinides
fblock
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More complex results of penetration and shielding
Energy levels vs atomic number

For H (Z=1) all orbitals within a
principle QN have same energy

For multi electron atoms
penetration follows

s>p>d>f

3d shielded very effectively by
orbitals of n < 3 and 3d almost
does not change in energy with Z
until Z=19

4s filled before 3d

However n = 4 does not shield 3d
effectively = energy drops

Similar pattern for 4d and 4f
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The energy of the 4s and 3d orbitals

* For K and Ca the E(3d) > E(4s), Sc on the E(3d) < E(4s) (but close)

— If 4s electron go into 3d orbital the extra e-e repulsion and shielding
cause the 3d to rise above 4s again — hence the strange energy level
diagram

— Result is that TM’s loose 4s electrons first when ionized

Energy 4 {—— _
1 3d (= o - — %
4s 4 %
g —H— 4
== % 3d

»  Increasing Z
K Ca Sc Ti
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Drawing representations of AO’s

Need to be able to draw AO’s when considering their interactions in MO’s
— So far diagrams have been to help visualise the 3D nature of AO’s

4
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Making Bonds
Localised Bond Pictures
Revision of JF of Lewis Bonding / VSEPR

* Localised view of bonding
— Views covalent bonds as occurring between two atoms
— Each bond is independent of the others
— Each single bond is made up of two shared electrons
— One electron is usually provided by each atom
— Each 1%t and 2" row atom attains a noble gas configuration (usually)
— Shape obtained by VSEPR (Valence Shell Electron Pair Repulsion)

e.g. H,

He + xH ——> H 3 H
Each H has a share of 2

electrons > H—H
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Lewis bonding

Octet rule for main group elements / 18 electron rule for transition metals
— All atoms have (or a share of) 8 electrons (main) or 18 electrons (TM)
— Gives rise to noble has configuration
— Stability since all valence levels filled

Diatomics e e

X X [ N J XX

° X

-F ¢ F °* 4+ XFX > e F 4 F X
(X ) X X o XX

2 electron shared = bond order = 1

F—F

_ 02 (X XX (X} X X
) O ) + X O X ) O :);

(X ) X X () XX

4 electron shared = bond order =2
0=0 53

Lewis bonding — polyatomics (H,0)

» Oxygen atom has 6 valence electrons and each hydrogen has 1 electron

XX XX
2H. + )(O X —_— H.X OX.H
XX XX

» Lewis bonding in H,0
— Oxygen has 8 electron, hydrogen has 2 electron = noble gas config.
— Oxygen — hydrogen interactions share 2 electron > H—0
— Oxygen also has two lone pairs

» Shape — VSEPR
— Electrons repel each other (lone pairs repulsion > than bonding pairs)
— Oxygen has 2 bond pairs and 2 lone pairs = 4 directions to consider
— Accommodate 4 directions = Tetrahedral shape
— H,0 is bent with H-O-H angle of 104.5°
— Compares with a perfect tetrahedral of 109.45° - lone pair repulsion
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Lewis bonding — polyatomics (ethene)

Used different symbols for electrons on adjacent atoms

xx H, JH
4He® 2 X X — ® vox ~ T
He + C SC%C,
H *H

Carbon atoms share 4 electron = bond order=2 > C=C
Carbon —hydrogen interactions share 2 electrons > C —H

Shape — VSEPR
— Electrons repel each other
— Carbon atoms have 3 directions — bond to C and two bonds to H
— Accommodate 3 bond direction = 120° in a plane (molecule is flat)
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Lewis structures — breaking the octet rule

* Some structures to not obey the 8 electron rule.

F /—\ 1 \
)‘(

Fex P xeF

> 120°

(only the electrons round the P are shown for clarity)

F F
F

— F atoms have 3 lone pairs (6 electrons) + 2 in each bond > 8
— P atom has 5 bond pairs with 2 electrons each = 10 electrons !
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TUTORIAL 1

. What is the relationship between the possible angular momentum quantum
numbers to the principal quantum number?

. How many atomic orbitals are there in a shell of principal quantum number
n?

. Draw sketches to represent the following for 3s, 3p and 3d orbitals.

a) the radial wave function

b) the radial distribution

c) the angular wave function

. Penetration and shielding are terms used when discussing atomic orbitals
a) Explain what the terms penetration and shielding mean.

b) How do these concepts help to explain the structure of the periodic
table

Sketch the d orbitals as enclosed surfaces, showing the signs of the
wavefunction.

. What does the sign of a wavefuntion mean ?
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An introduction to
Molecular Orbital Theory

Lecture 4 Revision of hybridisation
Molecular orbital theory and diatomic molecules

Prof G. W. Watson
Lloyd Institute 2.05
watsong@tcd.ie

Last lecture

d orbitals
— Radial wavefunctions, nodes and angular wavefunctions (shapes)

f orbitals
— Radial wavefunctions, nodes and angular wavefunctions (shapes)

Multielectron atoms
— Penetration and shielding
— Atomic orbital energies, filling and the periodic table

Valence bond theory (localised electron pairs forming bonds)

-> number of electron pairs

—> bond order (electrons shares divided by 2)
- repulsion of electron pairs (BP and LP)
-> molecular shape

— Lewis structures

— VSEPR
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Valence bond theory and hybridisation

Valence bond theory (Linus Pauling)
— Based on localised bonding
— Hybridisation to give a geometry which is consistent with experiment.
— Hybridisation constructs new hybrid atomic orbitals from the AO’s

Use Lewis model (number of electron pairs) >hybridisation - shape.
— E.g. BeH,, Be — 152 2s?

HexBexe H

Correctly predicted by VSEPR to be linear — can we explain it using AO’s
— Mix S with p,_ orbital = 2 sp hybridized orbitals
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sp hybridisation

* sp hybridisation
— Mix and a s and a p orbital — two combinations s +p, ands—p,

— Two AO’s 2 two hybrid AO’s

Relative sign is important when mixing orbitals

sp therefore means that the hybrid orbital is 50% s and 50% p

O

3
:
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Hybridisation — sp? hybridisation

Lewis structure = 3 directions

H
H+o ox 1°
+.C ox C +o
H H

Molecular is planar

Three directions each
at 120°

- mix s with 2 p orbitals

- sp? hybridisation
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Hybridisation — t bonds Hybridisation — sp?
 For ethene sp? hybridisation = bonding in three directions + For tetrahedral molecules we have to mix the s with all the p orbitals (sp?)
— This give rise 4 equally spaced orbitals e.g. methane Y
C% H, M 3
oG T — Iy
H H |
— Each local bond can hold 2 electrons Z 4 electron pairs sp> hybridisation tetrahedral
— Have not accounted for the second pair of electron shared by the C atoms
— H,0 can also be thought of like this with two of the
* Creates a © bond above and below the plane of the molecule sp’ orbitals occupied by lone pairs.
— Could think of the C as going from s? p?> > (sp?)? p,!
XX
Hex QO xe H —» —_— 15
XX
63 4 electron pairs sp? hybridisation tetrahedral
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Hybridisation — d orbitals

Trigonal Bipyramidal
sp’d > S electron pairs  , ione pairs

(s +px +py +pz+dz?) H)

Q.

Lone pairs equatorial

Five electron pairs

One lone pair

Two lone pairs

Three lone pairs

PF,, Trigonal bipyramidal ~ SFy, Seesaw CIFy, T-shaped XeF,, Linear

Six electron pairs

octahedra
sp3d? 2 6 electron pairs
(s+ px+ py+ pz+ dz?+ dx’-)?)

No lone pairs One lone pairv Two lone pairs

oy

XeF,, Square-planar

Hybridisation — summary

Hybrid | Atomic orbitals Geometry General | Examples
isation | that are mixed formula
sp s+p linear AB, BeH,
) i Lol AB, BF,, CO,*
Sp stp, + D, rigonal planar C,H,
SO,>, CH
3 4 45
Sp s+p. + P, +p. tetrahedral AB, NH,, H,0,
sp’d  |s+p + p, ot dz? Trigonal Bipyramidal | AB; PCl,, SF,
s+ptp, tp+ dx?-y? square pyramidal
SF
P’ |s+p, + p,tp.t dz? + dx?-y? | octahedral AB, [Ni(CI\i)4]2’
[PtCl,]*

S, Octahedral BrF-. Square-pyramidal
Lone pairs trans 65 66
Molecular orbital theory Molecular orbital theory of H, - bonding
«  Molecule orbital theory (Robert Mullikan) * H, molecule — interaction of two hydrogen 1s orbitals (¢, and @; )
) In phase i . . In Phase
* Electrons are delocalised n phase interaction (same sign)
— Different to Lewis and hybridisation (these are not MO) v, =(p, +o,)
- Constructive interference
— Molecular orbitals are formed which involve all of the atoms of the
molecule - -
) o ) Animation shows the in phase interaction of the s orbitals as they are brought
— Molecular orbital are formed by addition and subtraction of AO’s together
-> Linear Combination of Atomic Orbitals (LCAO)
— like hybrid AO’s but the MO involves the whole molecule
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Molecular orbital theory of H, - antibonding

H, molecule — interaction of two hydrogen 1s orbitas ( ¢, and @)

Out of phase interaction (opposite sign)

vy =0, )
- Destructive interference

A

Node between the atoms
Animation shows the out of phase interaction (different colours) of the s

orbitals as they are brought together

Interaction of 2 AO - 2 MO’s — A general rule is thatn AO 2 n MO’s
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Charge density associate with MO’s in H,

In phase interaction - charge density given by y?

=

— This gives an enhanced density where the AO’s overlap between the atoms

vi=(p,+o,) vi=lp.] +lo] +2[0.0,]

— referred to as positive overlap and pull the atoms together (o bonding) ¥ =V

Out of phase interaction

vi=(p.— ) v3 =l +lop} —2l0.0]

=

— This leads to reduced density between the atoms W=y -

— referred to as negative overlap and pushes the atoms apart (¢* anti-bonding)

Can not create electrons = New wave functions must be normalised to ensure
probability in 1!
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Energy level diagram for H,

Interference between AO wave functions = bonding
— Constructively = bonding interaction
— Destructively - anti-bonding interaction

Energy level diagram represents this interaction

— Two s orbitals interaction to create a low energy bonding and high energy
anti-bonding molecular orbital

— Electrons fill the lowest energy orbital (same rules as for filling AO’s)
— Bonding energy =2 AE

AE
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What happens when the AO’s have different energies?

Hypothetical molecule where the two s orbitals have different energies
E(p,) < E(9p)

What would the MO’s be like
— Bonding MO will be much more like the low energy orbital @,
— Anti-bonding MO will be much more like high energy orbital ¢,

We can say that the bonding MO is | Epergy _
v, =(C0,+Cl0,) I 0. P
Where the coefficients C, indicate the

contribution of the AO to the MO

W(bonding)

So for C?>cCy

A AB B
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Linear Combination of Atomic Orbitals - LCAO

*  We wrote an equation using coefficients for the contribution of AO’s to the
bonding MO, we can do the same for the anti-bonding MO

v, =(Co0, +C0,) '//U*=(C;’ ?,—Cy %)
where the coefficients are different are reflect the contribution to each MO

* *

* The sign can be adsorbed into the coefficient and we can write all of the MO’s
in a general way
1

n=1 _y v1=(Clo,+Choy)
V/n :(ngoa +Cl:1¢b)
n=2

C!l=08,C,=02

¥ :(Cg% +C§¢b) Cﬁ = O.2,C§ =—08

* The coefficients contains both phase (sign) of the AO’s and how big their
contribution (size) is to a particular MO

LCAO

* Generally we can write

No AO's n
va= T Ciox

X=d...

x=ab,c .... (all of the AO’s in the molecule) n=1,2,3.....(the resulting MO’s)

« So MO()= w,=Cip,+Cipy+Copp, +Chpy +....
MOQ)= V> =Cip,+Cipp +Clop. +Cipy ..
MOQB)= y3=Cip,+Cipy+Clp.+Cipy +...

lec - coefficients for MO(1),

Ci - coefficients for MO(2) etc.

* And an examination of the coefficients tells us the bonding characteristics of
the MO’s
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What interactions are possible What interactions are NOT possible
*  We have seen how s orbitals interact — what about other orbitals » Some orbital can not interact — they give rise to zero overlap
» Ifyou have positive overlap . “ s » Positive overlap (constructive interference) on one side in cancelled by
reversing the sign Dnegative overlap Positive Overlap e negative overlap (destructive interference) on the other
s [
E.g. s+sandp_+p. > +ve * s+ p, positive overlap above the axis is cancelled by negative overlap below
s—sandp,—p. > -ve 8—»: a B — Same is true for the other interactions below
* Must define orientation and
stick to it for all orbitals. “” = E“. -
Thus / “s7  Negative Overlap a-
P: +p z 2 -ve
i.e. for sigma bond between
P orbital need opposite sign coefficients ! Bere =
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Lecture 5 Labelling MO’s. 1%t row homonuclear diatomics

Prof G. W. Watson
Lloyd Institute 2.05
watsong@tcd.ie

Last lecture

* Hybridisation - combining AO’s on one atom to = hybrid orbitals
- hybridisation made consistent with structure

* Molecular orbital theory (delocalised view of bonding)
— LCAO —all AO’s can contribute to a MO
- nAO’s > nMO’s
P+

— Filled in same way as AO’s

— Example of H, Energy -
H H, H

* Molecular orbitals for AO’s of different energy
* Linear Combination of Atomic Orbitals (LCAO)

— Use of coefficient to describe (i) phase of interaction and (ii) size of

contribution of a given AO NodO's
vi= ¥ Cipy
78

Labelling molecular orbitals

1) Symmetry of bonding
o = spherical symmetry along the bond axis - same symmetry as s orbital no
nodes pass through the bond axis (can be at right angles > c*)

GO ©Q0 I~

Pz +p:

s+s p:+s

7 = one nodal plane which passes
through the bond axis

0 = two nodal plane which pass
through the bond axis

(endond or d )
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Labelling molecular orbitals

2) bonding and anti-bonding (already met this label)

— Nothing if bonding (no nodes between bonded atoms)

Px+ px

— Additional * if a nodal plane exits between the atoms, that is if the
wavefunction changes sign as you go from one atom to the other.




Labelling molecular orbitals 2"d row homonuclear diatomics

3) Is there a centre of inversion ? i.e. is it Centrosymmetric ? * Li-Li 2 Ne-Ne
— The final label indicated whether the MO has a centre of inversion symmetry

— Possible interactions between 1s, 2s and 2p

Py + Px Py = Px
As you go from one side of Wave function does o bonding S—S8,p,—p, 7 bonding DX — px, py - py
wave function through the 1 not change sign
centre of the bond the sign of -> centrosymmetric
the wavefunction reverses > g = gerade or " . @ @

- not centrosymmetric
- U = ungerade or odd

7T

u | T g " m EXOED s 3 8 8
]

* MO’s sometimes labelled with the type of AO forming them e.g. 6 0r o, " “” XD
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Energy level diagram for O, Other possible interactions

Will o interactions between s and p, be important

» 2s and 2p energies sufficiently spaced to give little interaction

. . — Depends on energy difference , @ 0O
~ Simple picture of the MO A Unpaired electrons between s and p,
& G*

u ->Paramagnetic — Iflarge then no effect ' . ‘. @ G

Label MO’s starting from the
bottom although often only
valence orbitals

* How does the energy of the 2s and 2p vary with Z (shielding / penetration)

A

) —=

No sp mixing

2s

Energy difference too big to
interact with valence orbitals sp mixing

Energy —

1s AO’s very small = very Li Be B C N+t oo P <

small overlap in lower levels
(small AE)

* QGap increases — 2p more effectively shielded - critical point between O and N
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MO diagram for N,

» 2sand 2p energies sufficiently close for interaction = more complex
— lo and 2o shift to lower energy
— 3o shifted 4o shifted to high energy
— 3o now above 1n

5 —— i

Making sense of N,
Take basic model for oxygen — no s p interaction
— Examine how the MO’s can interact

— m and o can not interact — zero overlap = © level remain the same
— Examine ¢ — o interactions

%, do’, 40", Bonding interactions can interact
m levels unaffected A ; with each other 1o, and 30,
2n",
s 36, e —'HT
t s — A =
i 30, -
1w, :
::_-'.;: 2('5 *u L \‘,\“ ___________ I b 1 o
5 20-*11 2 .
2s —1'L—‘ ST Thus 1o, goes down in energy and 3G,
Io i goes up in energy
g Top ™
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Making sense of N, MO diagrams for 2" row diatomics
. . . e — » The effect of the overlap between 2s and 2p is greatest for the Li. The MO
* Now examine the anti-bonding e e di h tematicall th odic tabl
interaction (2 and 4c) o iagram changes systematically as you go across the periodic table
D ¢ Q * . Lis Bey B; s N, 0
46*“.-"‘ : “““-_ , ' Q 28, —= —_— P - T -
4" th 26" 3ogl— "
Thus 26*, goes down in energy and 4c*, oy e b 4 _—L b
. L B T A i
goes up in energy L
T —u
: For bonding with anti-bonding (16 — 4o - E. —H—
26t | or 26 — 30) the sign changes on one e, I
— wave function = zero overlap. - b
25— D - 2 |
""""" * s—pmixing > B, — paramagnetic and C, diamagnetic
lo, P (> D
87
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MO treatment of BeH,

e VSEPR - linear molecule,
— Be—1s°2s°2p° H-1Is!
— Examine interaction of 6 AO with each other
— 2H Is,Be 2s and Be 2p, Be 2p, Be 2p, 2> 6 MO’s

H-Be-H —» Z

Interaction between H /s and Be 2p,

ohe
/ \4 anti-bonding | bonding / \anti-bonding
oo 0. 0 _0.00

Each of these is delocalised over three atoms and can hold up to two electrons

Interaction between H /s and Be 2s

bonding

p, and p, have zero overlap = non bonding

Energy level diagram for BeH,

JO® -
.\). 36",

Non bonding p, and p,

2s 4‘L— “‘"‘-. — "'"‘l
““"-. ﬂ=1= 20“
—1'L_ * lo
Be BeH, ZH |

Compare these two MO’s with no sp mixing with the localised model of two
Equivalent bonds formed via sp hybridization

89 90
Alternative approach Alternative energy level diagram for BeH,
» Step wise approach (ligands first) H-Be-H —» Z
Mix hydrogen Is orbitals first .J . .
\ 4
- two Molecular orbitals \J O
- < Non bonding p, and p,
Then mix with s (zero overlap with pz) Then mix with p, (zero overlap with s) % . ‘ .
25 Hh— B
\.’ v” 20, R P U ——— 44
lo,
e_0 _00 00 .o 9
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Lecture 6 More complex molecules and CO bonding

in transition metal complexes
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Last lecture

LCAO

— Interaction of AO’s with different energy = lower AO has bigger
contribution

— Representing contribution as coefficient

AO interactions that were possible 2> MO’s
— positive, negative and zero overlap
— labelling of MO’s (c/m, *, g/u)

2" row homo nuclear diatomics
— 2s — 2p mixing occurs up to N = energy different too big after this (O,, F,)
— Difference in MO diagram for N, and O,

Molecular orbital treatment of BeH,

94

MO treatment of H,O z 0

H,O0 is not linear — but why ?
— We will examine the MO’s for an non linear tri-atomic and find out.
— What orbitals are involved—2 H /s + O 25 O 2p, O 2p, and O Zp,

Lets start by creating MO’s from the hydrogen 1s orbitals.

Taking the in phase pair first- it will interact with the O 2s and O 2p, (zero overlap
with O 2p, and O 2p))

Problem - This is mixing three orbitals = must produce three orbital

95

MO’s of H,0 : 0

Three orbitals = three MO’s

anti - bonding

<\approx. 2p,+H

3 ¢ .Q.

Y \ approx. 2p, - 2s + H
“Approximately ;
@

non-bonding ; »
e 6 0 O

approx. 2s + 2p, (a little) + H

0] 2H ...

Y Bonding |
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MO’s of H,0 : 0

u.u.

::':anti - bonding

* Out of phase H Is orbitals
— Only interact with p, > 2 MO’s
— Zero overlap with p,

w @

Bonding

97

Energy level diagram for H,O z 0
| H H
X
There are not two lone pairs !

o°e S

:” 2pY’ I :'_5 g

Slightly bonding Pz
Non bonding Py
non bonding p, Very different to the VB
’ concept of two identical sp?
filled orbital

MO theory correct.
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Comparison of H,O and BeH,

* Both cases of XA, = same MO — different No of electrons
— Bonding MO’s as a function of A-X-A bond angle

@ ——4

|
©
S

BeH, linear

BH, 131°
CH, (1) 134° 59—~
CH, (s) 1020 o@b R

_ CC®
NH,  103°

— 000
OH, 105 o

90°  H,0 CH,T)  180°
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1t MO’s of Benzene

« 7 bonding is more important for reactivity —independent of & (zero overlap)
— six p, orbitals = combine to form six MO’s

» Different ways of arranging six px orbitals on a ring

— Lowest energy — all in phase
— Degenerate levels (1 nodal plane = 2 nodes)
— Degenerate levels (2 nodal planes = 4 nodes)

— Highest energy — all out of phase (3 nodal planes = 6 nodes)

— Energy increases with number of nodes — as in AO’s
— Also the number of nodes on a ring must be even = continuous wavefunction

* Lowest energy all in phase
— All coeffcients the same
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1t MO’s of Benzene

Next occupied degenerate pair = 1 nodal plane
— Two ways of doing this — between atoms and through a pair of atoms

— As the wavefunction goes through 0 (at the node) the smooth wavefunction
has smaller coefficients next to the node zero at the node

2 electron per MO spread over 6 atoms
— Compare with Lewis structure with individual double bonds
— With local bonding have to resort to resonance structures to explain benzene

-
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MO diagram for CO

+ Same orbitals as homo nuclear diatomics
— different energies give rise to significant 2s - 2p mixing

— confusing set of orbitals

40  C-O anti - bonding (more C)
5 2rn* 7+ (uneven — more carbon)
p # K
3¢  Primarily carbon (p.)
It 7w bond (uneven — more oxygen)
25 4 , 2¢ Primarily oxygen (p,)
1o C-O bonding interaction (more O)
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The HOMO and LUMO of CO

For chemical reaction the HOMO (Highest Occupied Molecular Orbital) and
the LUMO (Lowest unoccupied Molecular Orbital) are the most important.

LUMO —2n*
Comes from standard 7 interaction

HOMO - 3o
low energy Oxygen orbitals
makes 26 2 mainly O pz however lower oxygen orbital
- in 36 mainly C pz means 7 has has more oxygen and

7* more carbon
Some anti-bonding mixes in
due to sp mixing

ea A
. ! % e
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Interaction of the CO 3o with d orbitals

* Three sets of interaction based on symmetry of ligand AO’s
— Generally applicable to o bonding TM ligands

* a,, allligand AO’s in phase
— Interaction with s orbital = 1

— t;, ligands in one axis contribute

— With opposite phase — one nodal plane
— Interaction with p orbitals > 3

z
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Interaction of the CO 36 with d orbitals MO diagram for Tm (c-L),

* ¢, ligand phases have two nodal planes

— Interact with d » dxz_yz 2>2

e Electrons from filled o orbitals on
the ligands fill all the bonding
orbitals

* delectrons fill t,, (non bonding)
and ¢”, (antibonding)

e Exampleis d®—e.g. Co*"

» These are the orbitals considered
in ligand filed theory. Note the e”,
is anti-bonding !

* Three remaining d orbitals point between ligands O
— zero overlap (t,,)

*  What really decided A
interaction

ot 18 the T
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Low ligand field situation

» Ligand orbitals are low energy and filled (e.g. F)
— Filled orbitals interact in a r fashion
— Bonding combinations are reduced in energy and filled (like ligand orbitals)
— Antibonding combination are raised in energy and filled (like d orbitals)

1t interactions with TMs

* Orbitals with n character can interact with the t,, d orbitals %

— Must be correct symmetry (t,,) = 3 arrangements
possible using d_, d,, d

xy Yyx Yxz
+ Two extreme situations e* e*
— Ligand orbitals are low energy and filled (e.g. F) =“—g = Ag
— Ligand orbitals are high energy and empty (e.g. CO) et L PV
A T ER Rt :ﬁﬁtﬂim
- e e T,
. . —ﬁé t,,
Interaction with Interaction with t, I A ﬁé
high energy e* low energy :
empty ligand —t filled ligand g
— orbitals orbitals S 2gar o
A B
v oct #
‘) i without 7 with 7 ligand
Lo ﬁé
® ® — Strong interaction with filled orbitals with 7 interaction leads to reduction in
A, (box shows the orbitals considered in ligand field theory)
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High ligand field situation

Ligand orbitals are high energy and empty (e.g. CO 271t*)
— Filled orbitals interact in a 7 fashion
— Bonding combinations are reduced in energy (like d orbitals)

— Antibonding combination are raised in energy and empty (like ligand
orbitals)

* B *
e, Sl

A
oct
y s

Hle

-
[N
[ E]
%
<

without 7t with ligand

— Strong interaction with empty orbitals with 7 interaction leads to increase
in A, (box shows the orbitals considered in ligand field theory)
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1.

Tutorial 2 — part a

Explain the MO approach for the interaction of
a) two s orbitals of identical energy

b) two s orbitals of slightly different energy

c) two s orbital of very different energy.

Consider the bonding in the molecule O,
a) Draw a Lewis structure for O,
b) Determine the hybridization
¢) Perform an MO treatment of O,
(i) What orbitals are involved?
(i) what interactions are possible?
(ii1) what do the resulting MO’s look like?
(iv) sketch an MO energy level diagram.

d) What difference are there in the details of the bonding diagram
between the Lewis and MO treatments
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Tutorial 2 — part b

Consider the molecule BeH,

a) Draw a Lewis structure

b) Determine the hybridization

c) Perform an MO treatment of O,
(1) What orbitals are involved.

(i1) Generate appropriate ‘ligand” MO’s and interactions with the
central atom

(iii)what do the resulting MO’s look like?
(iv)sketch an MO energy level diagram.

d) What difference are there in the details of the bonding diagram
between the Lewis and MO treatments

Perform the same analysis for BeH,, HF, BH;, and CH,

Use molecular orbital theory to explan
a) The splitting of the d orbitals by sigma interactions with ligands
b) The effect of « interaction on the ligand field strength.
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THE END
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