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Objectives of the course

• Wave mechanics / Atomic orbitals (AOs)
– The basis for rejecting classical mechanics (the Bohr Model) in treating j g ( ) g

electrons
– Wave mechanics and the Schrödinger equation

i f i bi l f i– Representation of atomic orbitals as wave functions 
– Electron densities and radial distribution functions
– Understanding the effects of shielding and penetration on AO energiesUnderstanding the effects of shielding and penetration on AO energies 

• Bonding
– Review VSEPR and Hybridisation
– Linear combination of molecular orbitals (LCAO), bonding / antibonding

L b lli f l l bi l (MO ) ( d )– Labelling of molecular orbitals (MOs) (σ, π and g, u)
– Homonuclear diatomic MO diagrams – mixing of different AO’s
– More complex molecules (CO H2O )
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More complex molecules (CO, H2O ….)
– MO diagrams for Inorganic complexes

Lecture schedule

Lecture 1 Revision of Bohr model of atoms

Lecture 2 Schrödinger equation, atomic wavefunctions and radial 
distribution functions of s orbitals

Lecture 3 More complex wavefunctions and radial distribution 
functions and electron shieldingg

Lecture 4 Lewis bonding, Hybridisation, and molecular orbitals

Lecture 5 Labelling MO’s. 1st row homonuclear diatomics

Lecture 6 MO approach to more complex molecules and CO bonding 
in transition metals complexes 
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Literature

• Book Sources: all titles listed here are available in the Hamilton Library

– 1. Chemical Bonding, M. J. Winter (Oxford Chemistry primer 15) 
Oxford Science Publications ISBN 0 198556942 – condensed text, 
excellent diagramsexcellent diagrams

– 2. Basic Inorganic Chemistry (Wiley) F.A.Cotton, G. Wilkinson, P. L. g y ( y) , ,
Gaus – comprehensive text, very detailed on aufbau principle

3 I i Ch i (P i H ll) C H f A G Sh– 3. Inorganic Chemistry (Prentice Hall) C. Housecroft, A. G. Sharpe –
comprehensive text with very accessible language. CD contains 
interactive energy diagrams

– Additional sources:
h // i h f k/ bi / ll f AO d MO
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http://winter.group.shef.ac.uk/orbitron/ - gallery of AOs and MOs



Tutorials

• Expectation
– Tutorials are to go through problems that students are having with the g g p g

course

i l f h l i h h– Tutorials are NOT for the lecturer to give you the answers to the 
questions – or to give you another lecture. 

– All student must BEFORE the tutorial
• Look at the notes for the course and try to understand them
• Attempt the questions set – and hence find out what you can not do!
• Bring a list of questions relating to aspects of the course which you could 

not understand (either from looking at the notes or attempting the 
questions)

• It is a waste of both the lecturers and students time if the tutorial to ends up
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It is a waste of both the lecturers and students time if the tutorial to ends up 
being a lecture covering questions. 
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Lecture 1 The Bohr Model

Prof G. W. Watson
Lloyd Institute 2.05

watsong@tcd.ie

Adsorption / Emission spectra for Hydrogen

Johann Balmer (1885) measured line spectra for hydrogen
364.6 nm (uv), 410.2 nm (uv), 434.1 nm (violet), 486.1 nm (blue), and 
656.3 nm (red).

Balmer discovered these lines occur in a series - both absorption and emission -
where      is the Rydberg constant (3.29 ×1015 Hz) ℜ
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Balmer series n1=2 and n2=n1+1, n1+2, n1+3 …..
Other series for n1=1 (Lyman – UV), n1=3 (Paschen – IR) etc. 

⎠⎝ 21
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Other series for n1 1 (Lyman UV), n1 3 (Paschen IR) etc. 

Electrons must have specific energies – no model of the atom could explain this

Bohr model of the atom (1913)
http://www.youtube.com/watch?v=R7OKPaKr5QM

Assumptions
1) Rutherford (1912) model of the atom (Planetary model with central 

nucleus + electrons in orbit)

2) Planck (1901) Einstein (1905) the energy electromagnetic waves is2) Planck (1901), Einstein (1905) – the energy electromagnetic waves is 
quantised into packets called photons (particle like property).
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An stationary observer counts
ν waves passing per second } i.e. frequency = v Hz , cycles/sec,

sec-1



Bohr model of the atom

Speed of electromagnetic waves (c) is constant (ν and λ vary)

c = ν λ,  ν = c / λ,  E = h ν, E = h c / λ

As frequency increases, wavelength decreases. Given λ ν

e g radiowaves: λ 0 1 m X rays: λ 1 x 10-12 me.g. radiowaves: λ = 0.1 m X-rays: λ = 1 x 10-12 m
ν = 3 x 109 Hz ν = 3 x 1020 Hz
E = 2 x 10-24 J E = 2 x 10-13 J

E – energy (J), h – Plancks constant (J s), ν – frequency (Hz),
c – speed of light (m-1), λ – wavelength (m)
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Bohr model of the atom

3) Electron assumed to travel in circular orbits.

4) Apply quantisation to orbits - only orbits allowed have quantised 
angular momentum (comes from observation of spectra)
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5) Classical electrodynamical theory rejected (charged particles 
undergoing acceleration must emit radiation) 

6) Radiation adsorbed or emitted only when electrons jump from one 
orbit to anotherorbit to another 

ba EEE −=Δ
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where a and b represent the energy of the start and finish orbits 

Bohr model
Electron travelling around nucleus in circular
orbits – must be a balance between attraction 
to nucleus and flying off (like a planets orbit)

Electron feels two forces – must be balanced

to nucleus and flying off (like a planets orbit)

1) Centrapedal (electrostatic) 
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-Ze – nuclear charge, e – electron charge, ε0- permittivity of free space, 
r - radius of the orbit, m – mass of electron, v – velocity of the electron

Bohr model – calculating the energy and radius
NOT EXAMANABLENOT EXAMANABLE

• Energy 2
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• Energy is dependent on n2 and Z2 (2s and 2p the same – only true for 1 
electron systems 



Energy levels of Hydrogen
Substitute quantised momentum into energy expression and rearrange 
in terms of r (radius) (see previous slide)
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a0 (Bohr) radius of the 1s electron on Hydrogen 52.9 pm (n =1, Z =1)

Radius (r) depends on n2 and Z
1

Substitute r back into energy expression gives

( ) p Z
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Energy of 1s electron in H is 13.6056 eV = 0.5 Hartree (1eV = 1.602 × 10-19 J)

1
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Energy (E) depends on         and Z2
2n

1

Energy levels of Hydrogen

F h d (Z 1) n=3
n=4
n=5
n=∞

605613−2

For hydrogen (Z=1)

1

n=2

n 3
energy

=nE 2
6056.13

n
−

0
2anr = n=1

n     energy (eV)
1 -13.6056

nucleus

2 -3.4014

4 0 8504
3 -1.5117

5         -0.3779
4 -0.8504

∞ 0.0000
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Note. The spacing reflects the energy 
not the radius of the orbit.

0.0000

Ionization energy = -13.6056 eV 

Radius of orbits
n=4

For hydrogen (Z=1) n=3

2anr =

For hydrogen (Z 1)

n=2

distance

=E 6056.13−
0anr =

n=1

n=2=nE 2n

n     energy (eV)        r (pm)
1 -13.6056           52.9
2 3 4014 211

nucleus

2 -3.4014            211

4 -0.8504 847
3 -1.5117            476

Note The spacing reflects the radius of the

5         -0.3779          1322
4 0.8504            847

∞ 0.0000               ∞
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Note. The spacing reflects the radius of the 
Orbit – not the energy.

Emission spectra 
(http://www.youtube.com/watch?v=5z2ZfYVzefs)( p y )

hvEnergy of emission is Einitial - Efinal= 
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116056.13
finalinital nn

E

5   4  3   2       1

Same form as fitted to emission specta

Balmer series ( nfinal=2)

4 2 λ 486
n=3 n=2 λ = 656 nm
n=4 n=2 λ = 486 nm
n=5 n=2 λ = 434 nm
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=  13.6056 eV / c  =  3.29 ×1015 Hzℜ Note. The spacing reflects the energy 
not the radius of the orbit.



Problems with the Bohr Model

• Only works for 1 electron systems
– E.g. H, He+, Li2+g , ,

• Can not explain splitting of lines in a magnetic field
– Modified Bohr-Sommerfield (elliptical orbits - not satisfactory)

• Can not apply the model to interpret the emission spectra of complex atoms• Can not apply the model to interpret the emission spectra of complex atoms

• Electrons were found to exhibit wave-like propertiesp p
– e.g. can be diffracted as they pass through a crystal (like x-rays) 
– considered as classical particles in Bohr model
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Wave / particle duality
http://www.youtube.com/watch?v=IsA oIXdF 8

de Broglie (1923)
By this time it was accepted that EM radiation can have wave and particle 

p y _ _

y p p
properties (photons)

d li d h i l ld h i ( /de Broglie proposed that particles could have wave properties (wave / 
particle duality). Particles could have an associated wavelength (l)

mc
hhcEmcE =⇒== λ

λ
,2

No experimental at time.

1925 Davisson and Germer showed electrons could be diffracted according1925 Davisson and Germer showed electrons could be diffracted according 
to Braggs Law (used for X-ray diffraction)
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Numerically confirm de Broglie’s equation

Wave Mechanics

• For waves: it is impossible to determine the position and momentum of the 
electron simultaneously – Heisenberg ‘Uncertainty principle’

• Use probability of finding an electron from ψ2    (actually ψ*ψ – but functions 
we will deal with are real)we will deal with are real)

Where  ψ is is a wave function and a solution of the Schrödinger equation ψ g q
(1927). The time-independent form of the Schrödinger equation for the 
hydrogen atom is:
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energy energy energy

Wave mechanics and atoms 

• What does this mean for atoms

• Electrons in “orbits” must have an integer number of 
wavelengths

• E.g. n=4 and n=5 are allowed
– These create continuous or standing waves (like on aThese create continuous or standing waves (like on a 

guitar string)

• E.g. n=4.33 is not allowed
– The wavefunction is not continuous

• The wave nature of electrons brings in the quantized 
nature of the orbital energies. 
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Atomic solutions of the Schrödinger equation for H

• Schrödinger equation can be solved exactly for 1 electron systems
– Solved by trial and error manipulations for more electrons

• 3 quantum numbers describing a three dimensional space called an atomic 
orbital: n, l, m (and spin quantum number describing the electron s)orbital: n, l, m (and spin quantum number describing the electron s)

n = principal quantum number, defines the orbital size with values 1 to ∞

l = azimuthal or angular momentum quantum number, defines shape. 
For a given value of n, l has values 0 to (n-1).g , ( )

ml = magnetic quantum number, defines the orbital orientation. 
F i l f l h l f +l th h 0 t lFor a given value of l, ml has values from +l through 0 to –l.
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Solution of the Schrödinger equation for H

l has values 0 to (n-1)                   m has values from +l through 0 to –l

n     1 2 2 2 2
l   0 0 1 1 1
ml 0 0 -1 0 1

Orbital 1s 2s 2p 2p 2pOrbital   1s       2s 2p 2p 2p

3 3 3 3 3 3 3 3 3n 3 3 3 3 3 3 3 3 3

l 0 1 1 1 2 2 2 2 2

ml 0 -1 0 1 -2 -1 0 1 2

Oribtal 3s 3p 3p 3p 3d 3d 3d 3d 3d
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An introduction to 
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Lecture 2 – Representing atomic orbitals - The 
Schrödinger equation and wavefunctions.

P f G W W tProf G. W. Watson
Lloyd Institute 2.05
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Last Lecture

• Recap of the Bohr model
– Electrons 
– Assumptions
– Energies / emission spectra

Radii– Radii

• Problems with Bohr model
– Only works for 1 electron atoms
– Can not explain splitting by a magnetic field

• Wave-particle duality

• Wave mechanics
– Schrödinger
– Solutions give quantum number n l m atomic orbitals

24

– Solutions give quantum number n, l, ml atomic orbitals



Representations of Orbitals:

For an atomic system containing one electron (e.g. H, He+ etc.)
The wavefunction, Ψ, is a solution of the Schrödinger equation
It describes the behaviour of an electron in region of space called an atomic 
orbital (φ - phi)

Each orbital wavefunction (φ ) is most easily described in two parts
radial term – which changes as a function of distance from the nucleus

l hi h h f i f langular terms – which changes as a function of angles

φ xyz= φradial(r)  φangular(φ,θ)     =    Rnl(r)   Ylm(φ,θ) φ xyz φradial( ) φangular(φ, ) nl( ) lm(φ, )

Orbitals have 

• SIZE determined by Rnl(r) - radial part
• SHAPE determined by Ylm(φ,θ) - angular part (spherical harmonics)
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y lm(φ ) g p ( p )
• ENERGY determined by the Schrödinger equation 

Polar Coordinates

• To describe the wavefunction of atomic orbitals we must describe it in 
three dimensional space

• For an atom it is more appropriate to use spherical polar coordinates:

L ti f i t PLocation of point P

Cartesian = x, y, z

r, φ, θ
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java applet on polar coordinates at http://qsad.bu.edu/applets/SPCExp/SPCExp.html

Wavefunctions for the AO’s of H

General hydrogen like orbitals

Rnl(r) Ylm(φ,θ) 
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For hydrogen this simplifies as Z=1 and ao=1 (in atomic units) and thus ρ = 2. 
Hence Normalisation

C h h
Rnl(r) Ylm(φ,θ) 

Constants are such that

)(
1 12 =∂∫ τϕ

1s

Angular component is a constant
that is the probability of the electron 
in an orbital must be 1 when all space

)(2 re −
π2
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Angular component is a constant
Spherical

p
is considered

Radial Wavefunction 

• R(r) of the 1s orbital of H  
it decays exponentially with r

R(r) = 

• R(r) has no physical meaning

)(2 re − it has a maximum at r = 0 

• R(r) has no physical meaning 

• Probability depends on R(r)2
3

4

(1s)2

– Misleading – does not take 
into account the volume 2

3

) i
n 

a.
u.

(1s)

– R(r)2 increases toward r = 0 
1

R
(r

1s
– Volume very small so  

probability of being at 
small r is small

0
0 1 2 3 4 5

1s
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small r is small 0 1 2 3 4 5
Radius (a.u)



Radial distribution functions (RDF)

• Probability of an electron at a radius r (RDF) is given by probability of an 
electron at a point which has radius r multiplied by the volume at a radius of r 

• Consider a sphere – volume as we move at a small slice is 4πr2 δr

– By differentiation, 8

the volume of a sphere =                   3

3
4 rπ

V∂
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RDF( ) 4 2 R( )2
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• RDF(r) =  4πr2 R(r)2

• Maximum for 1s at a0 (like Bohr!)
0

2

0 1 2 3 4 5
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Maximum for 1s at a0 (like Bohr!) 0 1 2 3 4 5
Radius (a.u)

Wave functions of 2s and 3s orbitals
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The form of the wave functions is the important concept – not the precise equation

Note R(r) has functional form
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Note R(r) has functional form

Normalisation constant * polynomial (increasing order with n) * exponential (-r/n)

Wave functions of Hydrogen 2s and 3s orbitals

For H  2s(r) =                                      For H  3s(r) =)2()2(
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Wavefunctions changes sign 
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2s at (2-r) = 0 (i.e. r=2 a.u.)

3s changes sign twice with two
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0 2 4 6 8 10 12 14 16

R 3s3s changes sign twice with two 
nodes (r =1.9, 7.1 a.u.)

Caused by the order of
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-0.1
Radius (a.u)

Caused by the order of 
the polynomial !

What does a negative sign mean
• The absolute sign of a wave function is not important. 

– The wave function has NO PHYSICAL SIGNIFICANCE
– the electron density is related to the square of the wave function
– This is the same irrespective of the sign

• Wavefunction signs matter when two orbitals interact with each other (see• Wavefunction signs matter when two orbitals interact with each other (see 
later)

• Some books have the 2s as opposite sign – you can see that the electron 
density R(r)2 is the same
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Radial Nodes

• Number of radial node =   n – l – 1
1s =    1 – 0 – 1   =   0           
2s =    2 – 0 – 1   =   1       2p =    2 – 1 – 1   =   0
3s =    3 – 0 – 1   =   2       3p =    3 – 1 – 1   =   1      3d =    3 – 2 – 1   =   0

• Why are there radial nodes ? 
Pauli exclusion principle no two electrons can have the same set of QN’s– Pauli exclusion principle – no two electrons can have the same set of  QN’s

– Actually – no two electron can overlap (i.e. occupy same space)y p ( py p )

– Overlap integral =                                     (analogous to normalisation) 0* =∂∫ τϕϕ BA
AO’s are said to be Orthogonal

Satisfied for AO’s with same l by having change(s) in the wave function sign
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– Satisfied for AO s with same l by having change(s) in the wave function sign
– Satisfied for AO’s with different l angular component ensures no overlap

RDF’s of ns orbitals

1s – 1 peak. Maximum at r = a0 - Bohr Model radius of    a0
2s – 2 peaks Maximum at r ≈ 5 a0 - Bohr Model radius of 4 a0
3 3 k M i 13 0 B h M d l di f 93s – 3 peaks Maximum at r ≈ 13 a0 - Bohr Model radius of 9 a0

Shape important for orbital energies

6
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0 5 10 15 20
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Radius (a.u)

Representing atomic orbitals

• Represent orbitals, so far radial and angular terms

• In 2D we can use dot diagrams to look at the whole wave function
– s orbitals have no angular component – spherical symmetry
– Dot diagrams show electron density within a plane – no sign
– Can see where density goes to zero – nodes

Can see how greater volume as r increases makes most probable– Can see how greater volume as r increases makes most probable 
distance. 

1 2 3s1s 2s 3s
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Boundary surface

• Represent the wave function in 3D
– Draw a 3D contour at a given value of φ
– Alternatively can define contour such that in enclosed a space which the 

electron spends most of its time
– Shows the shape and size of the orbitalShows the shape and size of the orbital
– Can not see the inner structure of the wave function
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p orbitals - wavefunctions

• There are three p orbitals for each value of n (px, py, pz)
– The radial function is the same for all np orbitalsp
– The angular terms are different different shapes (orientations)
– Angular terms are the same for different n 2px, 3px, 4px

• Wave function for 2p and 3p orbitals
R(r) Y(θ φ)
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Note the functional form of R(r) Constant * polynomial * r * exponential

p orbitals – radial functions

• Radial wave function for hydrogen p orbitals (Z=1)
for 2p  n = 2 ρ = 1                      for 3p n = 3 ρ = 2/3p ρ p ρ
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• Polynomial nodes

62 3369 ⎠⎝

Polynomial nodes 
– Equation for no. of radial nodes 
– n – l – 1 2p =0 , 3p =1

0.15

0.2

2p

– Ensures 2p and 3p orthogonal

• All p orbitals are multiplied by r 
0.1

0.15

) i
n 

a.
u.

R(r) = 0 at r = 0

• Required to match the angular function 0

0.05R
(r

)

3p
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q g
angular node 

-0.05
0 5 10 15 20

Radius (a.u)

p orbitals – angular functions boundary surfaces

)cos(
4
3)(

2
1

θ
π ⎟

⎠
⎞

⎜
⎝
⎛=zpY• All p orbitals have the same shape

⎠⎝

)cos()sin(
4
3)(

2
1

φθ
π ⎟

⎠
⎞

⎜
⎝
⎛=xpY

• Angular function give rise to direction

)sin()sin(
4
3)(

2
1

φθ
π ⎟

⎠
⎞

⎜
⎝
⎛=xpY

• Can represent p orbital as dot diagrams or 
boundary surfaces

• 1 angular nodal plane px (yz plane), py (xz plane) pz (xy plane)
– Ensures that p orbitals are orthogonal to s orbitalsp g
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p orbitals – RDF’s 

• Radial distribution function show probability at a given radius

• 2p function – no nodes, maximum at r = 4 a0 (same as n=2 for Bohr model)
• 3p function – two peaks, maximum at r ≈ 12 a0 (not the same as Bohr)

2.5

1.5

2

(r)
2

2p

0.5

1

4 π
r2  R

( 3p

0
0 5 10 15 20

Radius (a.u)
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Lecture 3 – More complex wave functions,  radial distribution 
functions and electron shielding

Revision of Lewis bonding and hybridization

Prof G. W. Watson
Lloyd Institute 2.05

t @t d iwatsong@tcd.ie

Last week

• Solutions of the Schrödinger equation for atoms
– Atomic orbitals (φ)
– Defined three quantum number (n, l, ml)

• Defined polar coordinates radial and angular terms• Defined polar coordinates radial and angular terms

• Examined wavefuntions of the s orbitals
– Angular term constant for s orbitals
– Wavefunction as     constant * polynomial * exponential
– Decays as the larger n the more diffuse the orbital)/( nr−Decays as                the larger n the more diffuse the orbital
– Defined radial nodes and examined there number (polynomial n – l -1)
– Discussed the requirement for radial nodes Pauli exclusion principle

)/( nre

• p orbitals
– Radial functions similar to s orbital (except additional r) R(0) =0

42

Radial functions similar to s orbital (except additional r) R(0) 0
– Angular terms define shapes px, py and pz – same for different n 
– Radial distribution function for p orbitals

d orbitals – wave functions

• Five d orbitals for each value of n (n ≥ 3) l = 2 , ml = -2, -1, 0, 1, 2

• Wave functions slightly more complicated (constant * polynomial * r2 * exp) 
– Radial wave functions same for all 3d orbital  

)2(2
2

3

0
)(

309
1)3( rer

a
ZdR ρρ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

• Max probability at r = 9 a0
0.08

0.1

1

1.5

3d - RDF
3d - R(r)

• AO’s with 0 nodes have
max probability at same
radius as Bohr model

0.04

0.06

(r
) i

n 
a.

u.

0.5

1

4 π
r2  R

(r
)23d  R(r)

radius as Bohr model

• 4d orbital has 1 node 0

0.02

0 5 10 15 20

R
(

0

4
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0 5 10 15 20
Radius (a.u)

Note the functional form of R(r) Constant * polynomial * r2 * exponential

d orbitals – angular functions

• Angular functions same for                                             irrespective of n 
same shape for 3d, 4d, 5d orbitals using boundary surfaces

222 ,,,, yxzxyyzxy ddddd −

p , , g y

Five different angular function e.g. )cos()cos()sin(
16
15)(

2
1

φθθ
π ⎟

⎠
⎞

⎜
⎝
⎛=xzdY

Two angular nodes planes 
orthogonal to s (0) and p (1)

16π ⎠⎝

orthogonal to s (0) and p (1)

e.g. dxy Nodal planes ing xy p
xy and xz

(yz)dxy 2zd

(xz)

44



f orbitals

• Almost no covalent bonding shape not really important

• l = 3 Seven different angular function for each n (n ≥ 4)
– f block is 14 element wide, same shape for 4f, 5f etc 
– Radial functions same for all nf orbitals
– Three angular nodes (nodal planes) orthogonal to s, p and d orbitals

45Note the functional form of R(r) Constant * polynomial * r 3* exponential

Penetration

• The RDF’s of AO’s within a given principle QN (n) have different shapes

• Number of nodes   n – l - 1
– n = 3 3s 2 nodes  3p 1 node 3d 0 nodes  

– 3s has a peak very close to the nucleus
3p has a peak close to the nucleus– 3p has a peak close to the nucleus

• These close peaks have a very strong 1

1.5

3d

3p

3sp y g
interaction with the nucleus

0.5

1

πr
2  R

(r)
2

• 3s is said to be the most penetrating

• Penetration 3s > 3p > 3d
0

0.54 π
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• Penetration 3s > 3p > 3d 0 5 10 15 20
Radius (a.u)

Multi electron atoms 
C t l ti ll l th S h ödi ti f lti l t t• Can not analytically solve the Schrödinger equation for multi-electron atoms 

– We assume hydrogen like wave functions for multi-electron atoms 
• Nuclear charge increases with atomic No. 
• electrons repel each other and shield the nucleus from other electrons• electrons repel each other and shield the nucleus from other electrons

• Effective nuclear charge Zeff = Z – S 
S = a screening or shielding constantS  a  screening or shielding constant

• E.g. Li atom – why is the electronic configuration 1s22s1 and not 1s2 2p1 ?
8

– 1s electrons shields the valence 
electrons from the nuclear charge

– 2s penetrates more effectively 6

8

1s
p y

feels a greater nuclear charge
– 2p penetrates less effectively
– 2s is filled first

4

4 π
r2  R

(r
)2

2p
2s

• E(1s) < E(2s) < E(2p)
0

2

4

47

• E(ns) < E(np) < E(nd) 0 5 10
Radius (a.u)

Periodic table 

• Shielding and penetration     E(ns) < E(np) < E(nd) < E(nf)

• This gives rise to electronic configuration of atoms and the order of elements 
in the periodic table

• Electrons are filled in increasing energy (Aufbau principle) and electrons fill 
degenerate (same energy) levels singularly first to give maximum spin 
(Hund’s rule)(Hund s rule) 

• E(4s) < E(3d) 1s 1s
K, Ca 2s 2p

3s
4s

3p
3d

• E(6s) < E(5d) ≈ E(4f)
La [Xe] 6s2 5d1

C [X ] 6 2 4f2

6s

4f

5d

48

Ce [Xe] 6s2 4f2 4f



More complex results of penetration and shielding
Energy levels vs atomic numbergy

• For H (Z=1) all orbitals within a 
principle QN have same energy

• For multi electron atoms 
penetration followsp

s > p > d > f

• 3d shielded very effectively by• 3d shielded very effectively by 
orbitals of n ≤ 3 and 3d almost 
does not change in energy with Z
until Z = 19until Z  19

• 4s filled before 3d

• However n = 4 does not shield 3d 
effectively energy drops 

49
• Similar pattern for 4d and 4f

The energy of the 4s and 3d orbitals

• For K and Ca the E(3d) > E(4s),  Sc on the E(3d) <  E(4s) (but close) 
– If 4s electron go into 3d orbital the extra e-e repulsion and shielding 

cause the 3d to rise above 4s again – hence the strange energy level 
diagram

– Result is that TM’s loose 4s electrons first when ionizedResult is that TM s loose 4s electrons first when ionized 

Energy {4p

{3d

4

4p

4s

44s

3d

50
K                 Ca                Sc                   Ti

Increasing Z

Drawing representations of AO’s

• Need to be able to draw AO’s when considering their interactions in MO’s
– So far diagrams have been to help visualise the 3D nature of AO’sg p
– Simple drawings are all you need !!!!!
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Making Bonds
Localised Bond Pictures

R i i f JF f L i B di / VSEPR

L li d i f b di

Revision of JF of Lewis Bonding / VSEPR

• Localised view of bonding
– Views covalent bonds as occurring between two atoms 
– Each bond is independent of the others p
– Each single bond is made up of two shared electrons
– One electron is usually provided by each atom
– Each 1st and 2nd row atom attains a noble gas configuration (usually)
– Shape obtained by VSEPR (Valence Shell Electron Pair Repulsion)

e.g. H2

H H×H + H× H       H×H              +              H×

Each H has a share of 2 
electrons H H

52

electrons H ─ H



Lewis bonding

• Octet rule for main group elements / 18 electron rule for transition metals
– All atoms have (or a share of) 8 electrons (main) or 18 electrons (TM)( ) ( ) ( )
– Gives rise to noble has configuration
– Stability since all valence levels filled 

• Diatomics
F F F

××

×F + F×
××

×– F2 F  F×
××

×F  + F×
××

××
2 electron shared bond order = 12 electron shared bond order  1

F ─ F

– O2

O        O×
××

××
×O         +     O×

××

××
×

53

××××
4 electron shared bond order = 2

O ═ O

Lewis bonding – polyatomics (H2O)
• Oxygen atom has 6 valence electrons and each hydrogen has 1 electron 

2 H        +     O×
××

×
××

H      O     H×
××

××

×

• Lewis bonding in H2O
– Oxygen has 8 electron, hydrogen has 2 electron noble gas config. 

×× ××

yg , y g g g
– Oxygen – hydrogen interactions share 2 electron H ─ O
– Oxygen also has two lone pairs

• Shape – VSEPR
Electrons repel each other (lone pairs repulsion > than bonding pairs)– Electrons repel each other (lone pairs repulsion > than bonding pairs) 

– Oxygen has 2 bond pairs and 2 lone pairs 4 directions to consider
– Accommodate 4 directions Tetrahedral shape

54

p
– H2O is bent with H-O-H angle of 104.5o

– Compares with a perfect tetrahedral of 109.45o lone pair repulsion 

Lewis bonding – polyatomics (ethene)

• Used different symbols for electrons on adjacent atoms 

H H
C     C×

×4 H     +    2  C×
××

×
H H

Carbon atoms share 4 electron bond order = 2 C ═ C

H H
Carbon atoms share 4 electron bond order  2 C  C
Carbon –hydrogen interactions share 2 electrons C ─ H

• Shape – VSEPR
– Electrons repel each other 
– Carbon atoms have 3 directions – bond to C and two bonds to H 
– Accommodate 3 bond direction 120o in a plane (molecule is flat)

55

Lewis structures – breaking the octet rule

• Some structures to not obey the 8 electron rule.
– e.g PF5g 5 

×
F F90o

F       P      F×
×

×

×

× F

F
F P 120o

F F
F

F

(only the electrons round the P are shown for clarity)

– F atoms have 3 lone pairs (6 electrons) + 2 in each bond 8
– P atom has 5 bond pairs with 2 electrons each 10 electrons !
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TUTORIAL 1

1. What is the relationship between the possible angular momentum quantum 
numbers to the principal quantum number?

2. How many atomic orbitals are there in a shell of principal quantum number 
n ?

3 Draw sketches to represent the following for 3s 3p and 3d orbitals3. Draw sketches to represent the following for 3s, 3p and 3d orbitals.
a) the radial wave function
b) the radial distribution )
c) the angular wave function

4. Penetration and shielding are terms used when discussing atomic orbitals
a) Explain what the terms penetration and shielding mean.
b) How do these concepts help to explain the structure of the periodic 

tabletable
5. Sketch the d orbitals as enclosed surfaces, showing the signs of the 

wavefunction. 
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6. What does the sign of a wavefuntion mean ? 

An introduction to 
Molecular Orbital TheoryMolecular Orbital Theory

Lecture 4  Revision of hybridisation 
Molecular orbital theory and diatomic molecules

fProf G. W. Watson
Lloyd Institute 2.05

watsong@tcd.ieg@

Last lecture

• d orbitals
– Radial wavefunctions, nodes and angular wavefunctions (shapes)

• f orbitals
Radial wavefunctions nodes and angular wavefunctions (shapes)– Radial wavefunctions, nodes and angular wavefunctions (shapes)

• Multielectron atoms
– Penetration and shielding
– Atomic orbital energies, filling and the periodic table

• Valence bond theory (localised electron pairs forming bonds)
– Lewis structures number of electron pairs

bond order (electrons shares divided by 2)
– VSEPR repulsion of electron pairs (BP and LP)

molecular shape

59

molecular shape

Valence bond theory and hybridisation

• Valence bond theory (Linus Pauling)
– Based on localised bonding 
– Hybridisation to give a geometry which is consistent with experiment.
– Hybridisation constructs new hybrid atomic orbitals from the AO’s 

• Use Lewis model (number of electron pairs) hybridisation shape.
– E.g. BeH2, Be – 1s2 2s2

H Be H× ×H     Be     H× ×

• Correctly predicted by VSEPR to be linear – can we explain it using AO’s
– Mix S with pz orbital 2 sp hybridized orbitals

60



sp hybridisation

• sp hybridisation
– Mix and a s and a p orbital – two combinations  s + pz and s – pz

– Two AO’s two hybrid AO’s
– Relative sign is important when mixing orbitals

sp therefore means that the hybrid orbital is 50% s and 50% p– sp therefore means that the hybrid orbital is 50% s and 50% p

+( )1 +( )
zpssp 222

1 ϕϕψ +=

( )1 +( )
zpssp 222

1 ϕϕψ −=

61

=    -

Hybridisation – sp2 hybridisation

• Lewis structure 3 directions

C C×
×

H H
C     C×

H H

• Molecular is planar

• Three directions eachThree directions each 
at 120o

mix s with 2 p orbitals 

sp2 hybridisation

62

sp hybridisation

Hybridisation – π bonds

• For ethene sp2 hybridisation bonding in three directions

Each local bond can hold 2 electrons

x

– Each local bond can hold 2 electrons
– Have not accounted for the second pair of electron shared by the C atoms

z

• Creates a π bond above and below the plane of the molecule
– Could think of the C as going from s2 p2 (sp2)3 px

1

63

Hybridisation – sp3

• For tetrahedral molecules we have to mix the s with all the p orbitals (sp3)
– This give rise 4 equally spaced orbitals e.g. methane

C
H H

C
H H

4 electron pairs sp3 hybridisation tetrahedral 

H O l b th ht f lik thi ith t f th– H2O can also be thought of like this with two of the 
sp3 orbitals occupied by lone pairs.

H      O     H×
××

×

64
4 electron pairs sp3 hybridisation tetrahedral

××



Hybridisation – d orbitals

sp3d 5 electron pairs
( + + + + d 2)

Trigonal Bipyramidal Lone pairs equatorial

(s + px + py  + pz + dz2)

sp3d2 6 electron pairs
octahedra

sp3d2 6 electron pairs
(s+ px+ py+ pz+ dz2+ dx2-y2)

65Lone pairs trans

Hybridisation – summary

Hybrid Atomic orbitals Geometry General Examples
isation that are mixed formula

sp s + p linear AB2 BeH2p p 2 2

sp2 s + px + py trigonal planar
AB3 BF3, CO3

2-

C2H4

sp3 s + px + py  + pz tetrahedral AB4
SO4

2-, CH4,
NH3, H2O,

sp3d s + p + p + p + dz2 Trigonal Bipyramidal AB PCl SFsp3d s + px + py  + pz + dz2

s + px + py  + pz + dx2-y2

Trigonal Bipyramidal 

square pyramidal

AB5 PCl5, SF4 

sp3d2 s + px + py  + pz + dz2 + dx2-y2 octahedral AB6

SF6
[Ni(CN)4]2-

[PtCl4]2-
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Molecular orbital theory

• Molecule orbital theory (Robert Mullikan)Robert Mullikan)

• Electrons are delocalised
– Different to Lewis and hybridisation (these are not MO)Different to Lewis and hybridisation  (these are not MO)

– Molecular orbitals are formed which involve all of the atoms of the 
molecule

Molecular orbital are formed by addition and subtraction of AO’s– Molecular orbital are formed by addition and subtraction of AO s 

Linear Combination of Atomic Orbitals (LCAO)( )

– like hybrid AO’s but the MO involves the whole molecule

67

Molecular orbital theory of H2 - bonding

• H2 molecule – interaction of two hydrogen 1s orbitals (      and      )ba ϕϕ

In phase interaction (same sign)
1s + 1s

In Phase

( )ϕϕψ +=

Constructive interference

( )ba ϕϕψ +=1

Animation shows the in phase interaction of the s orbitals as they are brought 
together

68



Molecular orbital theory of H2 - antibonding

• H2 molecule – interaction of two hydrogen 1s orbitas (      and      )
Out of Phase

ba ϕϕ

Out of phase interaction (opposite sign) 1s - 1s

( )bϕϕψ −=2

Destructive interference
( )ba ϕϕψ =2

Animation shows the out of phase interaction (different colours) of the s 
orbitals as they are brought together

Node between the atoms 

y g g

69
Interaction of 2 AO 2 MO’s – A general rule is that n AO n MO’s

Charge density associate with MO’s in H2

• In phase interaction - charge density given by ψ2

( )22 [ ] [ ] [ ]2222

– This gives an enhanced density where the AO’s overlap between the atoms

( )22
1 ba ϕϕψ += [ ] [ ] [ ]baba ϕϕϕϕψ 2222

1 ++=

– referred to as positive overlap and pull the atoms together (σ bonding) σψψ =1

• Out of phase interaction

( )22 ϕϕψ [ ] [ ] [ ]ϕϕϕϕψ 2222 +

– This leads to reduced density between the atoms

( )2 ba ϕϕψ −= [ ] [ ] [ ]baba ϕϕϕϕψ 22 −+=

*2 σψψ =
– referred to as negative overlap  and pushes the atoms apart (σ* anti-bonding)

C t t l t N f ti t b li d t

σ
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• Can not create electrons New wave functions must be normalised to ensure 
probability in 1 !

Energy level diagram for H2

• Interference between AO wave functions bonding
– Constructively bonding interaction
– Destructively anti-bonding interaction

• Energy level diagram represents this interaction
– Two s orbitals interaction to create a low energy bonding and high energyTwo s orbitals interaction to create a low energy bonding and high energy 

anti-bonding molecular orbital
– Electrons fill the lowest energy orbital (same rules as for filling AO’s)
– Bonding energy = 2 ΔE

Energy
ΔE

71
H                     H2 H

gy

What happens when the AO’s have different energies?

• Hypothetical molecule where the two s orbitals have different energies
)()( EE ϕϕ <

• What would the MO’s be like
B di MO ill b h lik th l bit l

)()( ba EE ϕϕ <

ϕ– Bonding MO will be much more like the low energy orbital
– Anti-bonding MO will be much more like high energy orbital

aϕ

bϕ

• We can say that the bonding MO is

( )CC ϕϕψ σσ +=

Energy ψ(anti-bonding)

bϕ

• Where the coefficients C, indicate the
contrib tion of the AO to the MO

( )bbaa CC ϕϕψσ += bϕ

contribution of the AO to the MO

So for    ψσ
ψ(bonding)σσ

bCC >
aϕ

72

ψσ

A                   AB                 B

ba CC >



Linear Combination of Atomic Orbitals - LCAO

• We wrote an equation using coefficients for the contribution of AO’s to the 
bonding MO, we can do the same for the anti-bonding MO

where the coefficients are different are reflect the contribution to each MO
( )bbaa CC ϕϕψ σσ

σ += ( )bbaa CC ϕϕψ σσ
σ

**

* −=

where the coefficients are different are reflect the contribution to each MO

σσ
ba CC >

** σσ
ba CC <

• The sign can be adsorbed into the coefficient and we can write all of the MO’s 
in a general way

( )b
n
ba

n
an CC ϕϕψ +=

( )bbaa CC ϕϕψ 11
1 +=n = 1 2.0,8.0 11 == ba CC

( )
( )bbaa CC ϕϕψ 22

2 +=n = 2 8.0,2.0 22 −== ba CC
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• The coefficients contains both phase (sign) of the AO’s and how big their 
contribution (size) is to a particular MO

LCAO

• Generally we can write

∑
sAONo nC
'

x = a b c (all of the AO’s in the molecule) n = 1 2 3 (the resulting MO’s)

∑
=

=
ax

x
n
xn C

...
ϕψ

x = a,b,c …. (all of the AO s in the molecule)     n = 1,2,3…..(the resulting MO s)

1111• So   MO(1) =

MO(2) =

....1111
1 ++++= ddccbbaa CCCC ϕϕϕϕψ

....2222
2 ++++= ddccbbaa CCCC ϕϕϕϕψMO(2)    

MO(3) =

....2 ++++ ddccbbaa CCCC ϕϕϕϕψ

....3333
3 ++++= ddccbbaa CCCC ϕϕϕϕψ

- coefficients for MO(1),                      - coefficients for MO(2) etc.  1
xC 2

xC
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• And an examination of the coefficients tells us the bonding characteristics of 
the MO’s 

What interactions are possible

• We have seen how s orbitals interact – what about other orbitals

• If you have positive overlap 
reversing the sign negative overlap Positive Overlap

E.g. s + s and px + px +ve
s s and p p ve

os ve Ove p

s – s and px – px -ve

• Must define orientation and 
stick to it for all orbitals.
Thus Negative Overlap

pz + pz -ve
pz – pz +ve

i e for sigma bond between

g p

75

i.e. for sigma bond between
P orbital need opposite sign coefficients !

What interactions are NOT possible

• Some orbital can not interact – they give rise to zero overlap

• Positive overlap (constructive interference) on one side in cancelled by 
negative overlap (destructive interference) on the other 

• s + px positive overlap above the axis is cancelled by negative overlap below
– Same is true for the other interactions belowSame is true for the other interactions below

Zero overlap
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Lecture 5 Labelling MO’s. 1st row homonuclear diatomics

Prof G. W. Watson
Lloyd Institute 2.05

watsong@tcd.ie

Last lecture

• Hybridisation combining AO’s on one atom to hybrid orbitals 
hybridisation made consistent with structurey

• Molecular orbital theory (delocalised view of bonding)
– LCAO – all AO’s can contribute to a MO
– n AO’s n MO’s

Filled in same way as AO’s– Filled in same way as AO’s
– Example of H2 Energy

ΔE

• Molecular orbitals for AO’s of different energy
H                     H2 H

• Linear Combination of Atomic Orbitals (LCAO)
– Use of coefficient to describe (i) phase of interaction and (ii) size of 

ib i f i AO

78

contribution of a given AO
∑
=

=
sAONo

ax
x

n
xn C

'

...
ϕψ

Labelling molecular orbitals
1) Symmetry of bonding

σ = spherical symmetry along the bond axis - same symmetry as s orbital no      
nodes pass through the bond axis (can be at right angles σ*)nodes pass through the bond axis (can be at right angles σ*)

π = one nodal plane which passes
through the bond axis

dzx +  px

δ = two nodal plane which pass 
through the bond axis

79

(end on dxy or             )22 yxd −

through the bond axis

Labelling molecular orbitals

2) bonding and anti-bonding (already met this label)
– Nothing if bonding (no nodes between bonded atoms)g g ( )

σ
π

– Additional * if a nodal plane exits between the atoms, that is if the p ,
wavefunction changes sign as you go from one atom to the other.

σ*

π*

σ

80



Labelling molecular orbitals

3) Is there a centre of inversion ? i.e. is it Centrosymmetric ?
– The final label indicated whether the MO has a centre of inversion symmetryy y

px + px px - px
As you go from one side of 
wave function through the 
centre of the bond the sign of 

Wave function does 
not change sign 

centrosymmetricg
the wavefunction reverses 

not centrosymmetric
u = ungerade or odd

y
g = gerade or 

even
u  ungerade or odd

• MO’s sometimes labelled with the type of AO forming them e g σ or σ

81

• MO s sometimes labelled with the type of AO forming them e.g. σs or σp

2nd row homonuclear diatomics

• Li-Li Ne-Ne

– Possible interactions between 1s, 2s and 2p

σ bonding s – s, pz – pz                       π bonding px – px, py - py

82

Energy level diagram for O2

• 2s and 2p energies sufficiently spaced to give little interaction
– Simple picture of the MO U i d l tp p

6σ∗
u

2π∗
g

Unpaired electrons 
Paramagnetic

2π∗

4σ∗
u

2p 2p
2π g

1πu

Label MO’s starting from the 
bottom although often only 
valence orbitals1πu

2π g

4σ∗
u

5σg

2σ∗
u

3σg

2s 2s
3σg

u

Energy difference too big to 
interact with valence orbitals

1σg

u

1 1
2σ∗

u
Energy

interact with valence orbitals

1s AO’s very small very 
ll l i l l l

83
O

1s

O

1s
1σg

small overlap in lower levels 
(small ΔE)

Other possible interactions
• Will σ interactions between s and pz be important

– Depends on energy difference 
b t dbetween s and pz

– If large then no effect

• How does the energy of the 2s and 2p vary with Z  (shielding / penetration)

2s

2p No sp mixing
2s

i i
Energy

Li Be B C N O F Ne

sp mixing
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Li Be B C N O F Ne

• Gap increases – 2p more effectively shielded - critical point between O and N



MO diagram for N2

• 2s and 2p energies sufficiently close for interaction more complex 
– 1σ and 2σ shift to lower energygy
– 3σ shifted 4σ shifted to high energy
– 3σ now above 1π 4σ∗

u
– π levels unaffected

2π∗
g

2p 2p
3σg

11πu

2s 2s 2σ∗
u
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1σg

Making sense of N2
• Take basic model for oxygen – no s p interaction

– Examine how the MO’s can interact
– π and σ can not interact – zero overlap π level remain the sameπ and σ can not interact zero overlap π level remain the same 
– Examine σ – σ interactions

4σ∗
u Bonding interactions can interact

2

2π∗
u

Bonding interactions can interact 
with each other 1σu and 3σu

3σ2p

1πg

3σ

2σ∗

3σu

1

2s

2σ u

Thus 1σu goes down in energy and 3σu

1σ
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1σu

goes up in energy 

Making sense of N2

• Now examine the anti-bonding 
interaction (2σ and 4σ) 4σ*

4σ∗
u

2

2π∗
u 2σ*

2p

1πg

Thus 2σ∗
u goes down in energy and 4σ∗

u
goes up in energy 

2σ∗

3σu For bonding with anti-bonding (1σ – 4σ
or 2σ – 3σ) the sign changes on one 

2s

2σ u wave function zero overlap.
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1σu

MO diagrams for 2nd row diatomics
• The effect of the overlap between 2s and 2p is greatest for the Li. The MO 

diagram changes systematically as you go across the periodic table
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• s – p mixing B2 – paramagnetic and C2 diamagnetic



MO treatment of BeH2
• VSEPR linear molecule,     

– Be – 1s2 2s2 2p0        H – 1s1

Examine interaction of 6 AO with each other

H – Be – H Z

– Examine interaction of 6 AO with each other 
– 2 H 1s, Be 2s and Be 2px,  Be 2py  Be 2pz 6 MO’s 

Interaction between H 1s and Be 2s Interaction between H 1s and Be 2pz

bonding i b di b dibonding anti-bonding bonding anti-bonding

Each of these is delocalised over three atoms and can hold up to two electrons

89
px and py have zero overlap non bonding 

Energy level diagram for BeH2

4σ*
u

2

3σ*
g

2p
Non bonding px and py

2s
2σ2σu

1σ
Be                    BeH2 2 H

1σg
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Compare these two MO’s with no sp mixing with the localised model of two 
Equivalent bonds formed via sp hybridization 

Alternative approach

• Step wise approach (ligands first)
Mix hydrogen 1s orbitals first 

H – Be – H Z

two Molecular orbitals
Be

BeBe

Then mix with s (zero overlap with pz)         Then mix with pz (zero overlap with s) 
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Alternative energy level diagram for BeH2

4σ*4σ u

3 *

2p Non bonding px and py

3σ*
g

2s
2σu

Be BeH 2 H
1σg

92

Be                    BeH2 2 H



An introduction to 
Molecular Orbital TheoryMolecular Orbital Theory

Lecture 6 More complex molecules and CO bonding 
in transition metal complexes 

Prof G W WatsonProf G. W. Watson
Lloyd Institute 2.05

watsong@tcd.ieg@

Last lecture

• LCAO
I i f AO’ i h diff l AO h bi– Interaction of AO’s with different energy lower AO has bigger 
contribution

– Representing contribution as coefficientp g

• AO interactions that were possible MO’s
– positive, negative and zero overlap
– labelling of MO’s (σ / π , *,  g / u)

• 2nd row homo nuclear diatomics
– 2s – 2p mixing occurs up to N energy different too big after this (O2, F2)p g p gy g ( 2, 2)
– Difference in MO diagram for N2 and O2

• Molecular orbital treatment of BeH

94

• Molecular orbital treatment of BeH2

MO treatment of H2O Oz

• H2O is not linear – but why ?
– We will examine the MO’s for an non linear tri-atomic and find out.

H H
x

– What orbitals are involved – 2 H 1s + O 2s O 2px O 2py and O 2pz

• Lets start by creating MO’s from the hydrogen 1s orbitals• Lets start by creating MO s from the hydrogen 1s orbitals.

• Taking the in phase pair first- it will interact with  the O 2s and O 2pz (zero overlap g p p pz ( p
with O 2px and O 2py)

95
• Problem - This is mixing three orbitals must produce three orbital 

MO’s of H2O Oz

• Three orbitals three MO’s
anti - bonding

H H
x

approx 2p + Hanti bonding approx. -2pz + H

2pz

Approximately  
non-bonding

approx. 2pz - 2s + H

+
2s

g

O 2 H

Bonding approx. 2s + 2pz (a little) + H
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O  2 H



MO’s of H2O Oz

• Out of phase H 1s orbitals
– Only interact with px 2 MO’s

H H
x

y px

– Zero overlap with py

anti - bonding

2pxpx

97

O  2 H
Bonding

Energy level diagram for H2O Oz
H H

x

There are not two lone pairs !

Slightly bonding Pz2p

H H
2py, n.b. Slightly bonding Pz

Non bonding Py

Very different to the VB

2p

b di
2σ

σ n.b.

Very different to the VB 
concept of two identical sp3

filled orbital
2s

non bonding py

1σ

H H

H H
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MO theory correct.
O  H2O 2 H

H H

Comparison of H2O and BeH2
• Both cases of XA2 same MO – different No of electrons

– Bonding MO’s as a function of A-X-A bond angle 

BeH2 linear

BH 131BH2 131o

CH2   (t)  134o

CH2   (s) 102o

NH 103oNH2 103

OH2 105o
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90º 180ºH2O CH2(T)

π MO’s of Benzene
• π bonding is more important for reactivity –independent of σ (zero overlap)

– six px orbitals combine to form six MO’s

• Different ways of arranging six px orbitals on a ring
– Lowest energy – all in phaseowes e e gy a p ase
– Degenerate levels (1 nodal plane 2 nodes)
– Degenerate levels (2 nodal planes 4 nodes)
– Highest energy – all out of phase  (3 nodal planes 6 nodes)

Energy increases with number of nodes as in AO’s– Energy increases with number of nodes – as in AO’s
– Also the number of nodes on a ring must be even continuous wavefunction

• Lowest energy all in phase 
– All coeffcients the same  

100



π MO’s of Benzene
• Next occupied degenerate pair 1 nodal plane

– Two ways of doing this – between atoms and through a pair of atoms

– As the wavefunction goes through 0 (at the node) the smooth wavefunction 
has smaller coefficients next to the node zero at the nodehas smaller coefficients next to the node zero at the node

• 2 electron per MO spread over 6 atoms 
– Compare with Lewis structure with individual double bonds
– With local bonding have to resort to resonance structures to explain benzene
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MO diagram for CO

• Same orbitals as homo nuclear diatomics 
– different energies give rise to significant 2s - 2p mixingg g g p g
– confusing set of orbitals

4σ C-O anti - bonding (more C)

2p
2π∗ π∗ (uneven – more carbon)

2p
3σ Primarily carbon (pz)

1π π bond (uneven – more oxygen)

2s

2s

2σ Primarily oxygen (pz)
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1σ C-O bonding interaction (more O)

The HOMO and LUMO of CO

• For chemical reaction the HOMO (Highest Occupied Molecular Orbital) and 
the LUMO (Lowest unoccupied Molecular Orbital) are the most important.

HOMO – 3σ LUMO – 2π*
l bi l f d d i ilow energy Oxygen orbitals Comes from standard π interaction
makes 2σ mainly  O pz however lower oxygen orbital

in 3σ mainly C pz means π has has more oxygen andin 3σ mainly C pz means π has has more oxygen and
π* more carbon

Some anti-bonding mixes in
due to sp mixing π π∗

3σ

C           O

103
C      O C      O

Interaction of the CO 3σ with d orbitals

• Three sets of interaction based on symmetry of ligand AO’s
– Generally applicable to σ bonding TM ligandsy pp g g

• a1g all ligand AO’s in phase
– Interaction with s orbital   1

t ligands in one axis contribute– t1u ligands in one axis contribute 
– With opposite phase – one nodal plane 
– Interaction with p orbitals 3 p

104



Interaction of the CO 3σ with d orbitals

• eg ligand phases have two nodal planes 
– Interact with                     222d2d 22 yx −2z

• Three remaining d orbitals point between ligands
– zero overlap (t2g)
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MO diagram for Tm (σ-L)6

• Electrons from filled σ orbitals on 
the ligands fill all the bondingt*

1u the ligands fill all the bonding 
orbitalsa*

1g

• d electrons fill t2g (non bonding) 
and e*

g (antibonding)
4s

4p

e*
g

• Example is d6 – e.g. Co3+

3d t2g

Δoct

• These are the orbitals considered 
in ligand filed theory. Note the e*

g
is anti-bonding !6 σ ligand eg is anti-bonding !

• What really decided Δoct is the π

orbitals

a

t1u

106

interaction a1g

π interactions with TMs

• Orbitals with π character can interact with the  t2g d orbitals 
– Must be correct symmetry (t2g) 3 arrangements 2g

possible using dxy, dyx, dxz

• Two extreme situations 
– Ligand orbitals are low energy and filled (e.g. F)
– Ligand orbitals are high energy and empty (e g CO)Ligand orbitals are high energy and empty (e.g. CO)

Interaction with 
high energy

Interaction with 
le*

g

Δ t

high energy 
empty ligand 

orbitals

low energy 
filled ligand 

orbitals

t2g

Δoct

? ?
107

? ?

Low ligand field situation
Li d bi l l d fill d ( F)• Ligand orbitals are low energy and filled (e.g. F)
– Filled orbitals interact in a π fashion
– Bonding combinations are reduced in energy and filled (like ligand orbitals) g gy ( g )
– Antibonding combination are raised in energy and filled (like d orbitals) 

e*
g

Δ

e*
g

Δoct

t2g

Δoct

t*
2g

t2g

without π with π ligand
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– Strong interaction with filled orbitals with π interaction leads to reduction in 
Δoct (box shows the orbitals considered in ligand field theory)



High ligand field situation
• Ligand orbitals are high energy and empty (e.g. CO  2π*)

– Filled orbitals interact in a π fashion
B di bi ti d d i (lik d bit l )– Bonding combinations are reduced in energy (like d orbitals) 

– Antibonding combination are raised in energy and empty (like ligand 
orbitals) 

e*
g e*

g

Δoct Δoct

t2g

t2g

without π with π ligand   

St i t ti ith t bit l ith i t ti l d t i
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– Strong interaction with empty orbitals with π interaction leads to increase 
in Δoct (box shows the orbitals considered in ligand field theory)

Tutorial 2 – part a

1. Explain the MO approach for the  interaction of
a) two s orbitals of identical energy) gy
b) two s orbitals of slightly different energy
c) two s orbital of very different energy.

2. Consider the bonding in the molecule O2

a) Draw a Lewis structure for Oa) Draw a Lewis structure for O2

b) Determine the hybridization
c) Perform an MO treatment of O2) 2

(i) What orbitals are involved?
(ii) what interactions are possible?
(iii) what do the resulting MO’s look like?
(iv) sketch an MO energy level diagram.

d) What difference are there in the details of the bonding diagram

110

d) What difference are there in the details of the bonding diagram 
between the Lewis and MO treatments

Tutorial 2 – part b

3. Consider the molecule BeH2
a) Draw a Lewis structure
b) Determine the hybridization
c) Perform an MO treatment of O2

(i) What orbitals are involved(i) What orbitals are involved.
(ii) Generate appropriate ‘ligand’ MO’s and interactions with the 

central atom
(iii) h d h l i MO’ l k lik ?(iii)what do the resulting MO’s look like?
(iv)sketch an MO energy level diagram.

d) What difference are there in the details of the bonding diagram ) g g
between the Lewis and MO treatments

4 Perform the same analysis for BeH HF BH and CH4. Perform the same analysis for BeH2, HF, BH3, and CH4

5. Use molecular orbital theory to explan
a) The splitting of the d orbitals by sigma interactions with ligands
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a) The splitting of the d orbitals by sigma interactions with ligands
b) The effect of π interaction on the ligand field strength.

THE ENDTHE END
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